移动性感知的卫星边缘计算网络中的计算卸载
卫星边缘计算作为地面边缘计算的延伸,是实现全球无缝计算覆盖的关键技术。然而,低地球轨道(LEO)卫星具有有限的计算资源并以高速移动,这自然而然地对找到具有最小网络延迟和能耗的更合适的计算卸载策略提出了挑战,特别是当大量共存的用户需要卸载任务时。因此,在本文中,我们主要关注卫星边缘计算网络(SECN)中的计算卸载,通过联合考虑LEO卫星的移动性和SECN的异构资源约束,探索更实际的计算卸载策略。我们首先通过明确LEO卫星的高速运动对计算卸载的影响,从而形成卫星边缘计算网络(SECN)中的移动性感知计算卸载(MCO)问题,旨在最小化网络延迟和能耗。考虑到MCO问题是离散且非凸的,因为目标函数和约束与二进制决策变量相关,我们随后将原始的非凸问题转化为连续凸问题,并证明其可行。为了避免因广泛存在的用户卸载而导致的高计算复杂性,我们设计了MCO-A,这是一种基于ADMM(交替方向乘子法)的分布式算法,以有效地解决MCO问题。最后,通过包括小规模和大规模场景在内的广泛实验评估了MCO-A的性能。实验结果表明,与基线和最先进的方法相比,MCO-A能够以更有效的方式实现较低的网络延迟和能耗。
图1 架构图
图2:卫星和用户之间的几何关系。
图3:低地球轨道(LEO)卫星移动的四种情景。