Mobility-Aware Computation Offloading in Satellite Edge Computing Networks

本文探讨了在LEO卫星高速移动和卫星边缘计算网络资源受限的背景下,如何通过移动性感知计算卸载(MCO)来最小化网络延迟和能耗。提出了一种基于ADMM的分布式算法MCO-A,实验结果显示其在各种场景下表现优于现有方法。
摘要由CSDN通过智能技术生成

移动性感知的卫星边缘计算网络中的计算卸载

卫星边缘计算作为地面边缘计算的延伸,是实现全球无缝计算覆盖的关键技术。然而,低地球轨道(LEO)卫星具有有限的计算资源并以高速移动,这自然而然地对找到具有最小网络延迟和能耗的更合适的计算卸载策略提出了挑战,特别是当大量共存的用户需要卸载任务时。因此,在本文中,我们主要关注卫星边缘计算网络(SECN)中的计算卸载,通过联合考虑LEO卫星的移动性和SECN的异构资源约束,探索更实际的计算卸载策略。我们首先通过明确LEO卫星的高速运动对计算卸载的影响,从而形成卫星边缘计算网络(SECN)中的移动性感知计算卸载(MCO)问题,旨在最小化网络延迟和能耗。考虑到MCO问题是离散且非凸的,因为目标函数和约束与二进制决策变量相关,我们随后将原始的非凸问题转化为连续凸问题,并证明其可行。为了避免因广泛存在的用户卸载而导致的高计算复杂性,我们设计了MCO-A,这是一种基于ADMM(交替方向乘子法)的分布式算法,以有效地解决MCO问题。最后,通过包括小规模和大规模场景在内的广泛实验评估了MCO-A的性能。实验结果表明,与基线和最先进的方法相比,MCO-A能够以更有效的方式实现较低的网络延迟和能耗。

在这里插入图片描述
图1 架构图

在这里插入图片描述
图2:卫星和用户之间的几何关系。

在这里插入图片描述
图3:低地球轨道(LEO)卫星移动的四种情景。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王知为

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值