任意给你一个[2,10000]之间的数,问你它是否可以是某段连续的素数之和,可以有多少种这样的表示。
53=53=5+7+11+13+17,有两种表示,所以53对应的答案是2。
41=41=11+13+17=2+3+5+7+11+13,一共有3种表示,所以41对应的答案是3。
20不能写成某段连续的素数之和,所以20对应的答案是0。
做法不难吧,先筛个素数,筛出来打表或者用线性筛都可以。然后求出所有的前缀和prefix[],然后求出所有的prefix[i]-prefix[j]就是全部的连续素数的和,然后排序,每次就二分查找一下就可以。
或者也可以每次都求一遍所有的prefix[i]-prefix[j]来找。
代码如下:
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
#define maxn 10005
int prime[maxn];//prime[0]为素数个数
bool check[maxn];
int prefix[maxn];
int sum[maxn*maxn];
void getPrime()//线性筛素数
{
for (int i = 2; i < maxn; i++)
{
if (prime[i] == 0)
prime[++prime[0]] = i;
for (int j = 1; j <= prime[0] && prime[j] <= maxn / i; j++)
{
prime[prime[j] * i] = 1;
if (i%prime[j] == 0)
break;
}
}
}
int main()
{
//freopen("input.txt", "r", stdin);
getPrime();
prefix[0] = 0;
for (int i = 1; i <= prime[0]; i++)
prefix[i] = prefix[i - 1] + prime[i];
for (int i = 1; i <= prime[0]; i++)
for (int j = 0; j < i; j++)
if (prefix[i] - prefix[j] < maxn)
sum[++sum[0]] = prefix[i] - prefix[j];
sort(sum + 1, sum + sum[0] + 1);
int num = 0, l, r, ans;
while (scanf("%d", &num) != EOF)
{
if (num == 0)
break;
l = lower_bound(sum + 1, sum + sum[0] + 1, num) - sum;
r = upper_bound(sum + 1, sum + sum[0] + 1, num) - sum;
if (l == sum[0] + 1)
ans = 0;
else
ans = r - l;
printf("%d\n", ans);
}
//printf("end\n");
//while (1);
return 0;
}