POJ 2739 Sum of Consecutive Prime Numbers 水题

23 篇文章 1 订阅

任意给你一个[2,10000]之间的数,问你它是否可以是某段连续的素数之和,可以有多少种这样的表示。
53=53=5+7+11+13+17,有两种表示,所以53对应的答案是2。
41=41=11+13+17=2+3+5+7+11+13,一共有3种表示,所以41对应的答案是3。
20不能写成某段连续的素数之和,所以20对应的答案是0。

做法不难吧,先筛个素数,筛出来打表或者用线性筛都可以。然后求出所有的前缀和prefix[],然后求出所有的prefix[i]-prefix[j]就是全部的连续素数的和,然后排序,每次就二分查找一下就可以。
或者也可以每次都求一遍所有的prefix[i]-prefix[j]来找。

代码如下:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
#define maxn 10005
int prime[maxn];//prime[0]为素数个数
bool check[maxn];
int prefix[maxn];
int sum[maxn*maxn];
void getPrime()//线性筛素数
{
    for (int i = 2; i < maxn; i++)
    {
        if (prime[i] == 0)
            prime[++prime[0]] = i;
        for (int j = 1; j <= prime[0] && prime[j] <= maxn / i; j++)
        {
            prime[prime[j] * i] = 1;
            if (i%prime[j] == 0)
                break;
        }
    }
}

int main()
{
    //freopen("input.txt", "r", stdin);
    getPrime();
    prefix[0] = 0;
    for (int i = 1; i <= prime[0]; i++)
        prefix[i] = prefix[i - 1] + prime[i];
    for (int i = 1; i <= prime[0]; i++)
        for (int j = 0; j < i; j++)
            if (prefix[i] - prefix[j] < maxn)
                sum[++sum[0]] = prefix[i] - prefix[j];
    sort(sum + 1, sum + sum[0] + 1);
    int num = 0, l, r, ans;
    while (scanf("%d", &num) != EOF)
    {
        if (num == 0)
            break;
        l = lower_bound(sum + 1, sum + sum[0] + 1, num) - sum;
        r = upper_bound(sum + 1, sum + sum[0] + 1, num) - sum;
        if (l == sum[0] + 1)
            ans = 0;
        else
            ans = r - l;
        printf("%d\n", ans);
    }
    //printf("end\n");
    //while (1);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值