密度聚类算法 OPTICS 的 Python 实现
密度聚类算法(Density-based Clustering)是一种常用于无监督学习中的聚类算法,它通过寻找样本点的密度可达性来划分数据集。OPTICS(Ordering Points To Identify the Clustering Structure)是一种基于密度的聚类算法的变体,它能够有效地发现具有不同密度的聚类,并按照密度的不同进行排序。在本文中,我将介绍如何使用 Python 实现 OPTICS 算法,并提供相应的源代码。
首先,我们需要安装所需的库。在这个实现中,我们将使用 scikit-learn 库来实现 OPTICS 算法,并使用 matplotlib 库来可视化聚类结果。可以使用以下命令来安装这些库:
pip install scikit-learn matplotlib
安装完成后,我们可以开始编写代码。首先,我们需要导入所需的库和模块:
from sklearn.cluster import OPTICS
i