LGB模型用于预测购房贷款违约

146 篇文章 36 订阅 ¥59.90 ¥99.00
本文介绍了如何利用LGB模型预测购房贷款违约。首先准备包含借款人信息、借款金额等特征的数据集,接着使用Python和LGB库进行数据预处理、模型训练,通过调整参数和评估指标优化模型性能。
摘要由CSDN通过智能技术生成

在房地产市场中,购房贷款违约是一项重要的风险问题。为了解决这个问题,我们可以使用机器学习算法来预测购房贷款违约的可能性。其中,LightGBM(LGB)是一种常用的梯度提升框架,适用于处理大规模数据集和高维特征。本文将介绍如何使用LGB模型来预测购房贷款违约,并提供相应的源代码。

首先,我们需要准备数据集。数据集应包含购房贷款的各种特征,如借款人的个人信息、借款金额、贷款利率、借款期限等。此外,数据集还应该包含目标变量,即购房贷款是否违约的标签。可以使用历史购房贷款数据来构建这个数据集。

接下来,我们将使用Python编程语言和LGB库来构建购房贷款违约预测模型。首先,我们需要导入所需的库:

import lightgbm as lgb
from sklearn.model_selection import train_test_split
from sklearn.</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值