Python实现感知机算法–附代码
感知机是一种二分类的线性分类模型,旨在通过训练数据集学习一个超平面作为分界线,将不同类别的数据正确分类。在本文中,我们将使用Python语言实现感知机算法,并介绍感知机的基本思想、算法流程以及如何对模型进行评估。
感知机的基本思想:
给定一个样本点(xi, yi),其中xi∈R^n,yi∈{-1,+1},求一个超平面S,使得所有正样本点(x_i, y_i=+1)都满足w·x_i+b>0,所有负样本点(x_i, y_i=-1)都满足w·x_i+b<0。其中w是超平面的法向量,b是偏置项。如果存在这样的超平面,那么称样本点是线性可分的,否则为线性不可分。
感知机的算法流程:
1.初始化w、b以及学习率α;
2.在样本集中选取一个样本点xi,将其输入到模型中进行预测;
3.比较预测结果和真实标签yi的差异,根据差异来更新w和b;
4.重复2-3步骤,直至训练集中所有样本点都能被正确分类,或达到指定的迭代次数。
下面是Python实现感知机算法的完整代码:
import numpy as np
class Perceptron(object):
def __init__(self):