Python实现感知机算法--附代码

418 篇文章 ¥99.90 ¥299.90
本文介绍了Python实现感知机算法,详细讲解了感知机的基本思想、算法流程,并提供了完整的Python代码。感知机是一种二分类线性模型,用于找到区分两类样本的超平面。文章还展示了如何评估模型性能并应用到实际数据集上。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python实现感知机算法–附代码

感知机是一种二分类的线性分类模型,旨在通过训练数据集学习一个超平面作为分界线,将不同类别的数据正确分类。在本文中,我们将使用Python语言实现感知机算法,并介绍感知机的基本思想、算法流程以及如何对模型进行评估。

感知机的基本思想:

给定一个样本点(xi, yi),其中xi∈R^n,yi∈{-1,+1},求一个超平面S,使得所有正样本点(x_i, y_i=+1)都满足w·x_i+b>0,所有负样本点(x_i, y_i=-1)都满足w·x_i+b<0。其中w是超平面的法向量,b是偏置项。如果存在这样的超平面,那么称样本点是线性可分的,否则为线性不可分。

感知机的算法流程:

1.初始化w、b以及学习率α;
2.在样本集中选取一个样本点xi,将其输入到模型中进行预测;
3.比较预测结果和真实标签yi的差异,根据差异来更新w和b;
4.重复2-3步骤,直至训练集中所有样本点都能被正确分类,或达到指定的迭代次数。

下面是Python实现感知机算法的完整代码:

import numpy as np

class Perceptron(object):
    def __init__(self):
     
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

code_welike

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值