基于模板匹配的车牌识别算法及Matlab实现
在计算机视觉领域,车牌识别一直是一个重要的问题。传统的车牌识别方法大多是基于特征提取和分类器的结合,例如使用SVM、神经网络等。但这些方法需要手工设计特征,且对于不同种类的车牌有着较大的差异,因此需要针对不同的车牌进行调整参数,可能会遇到通用性较低的问题。
模板匹配作为一种简单快速的图像匹配方法,近年来得到了广泛的应用。在车牌识别中,我们可以利用模板匹配的思路,用现有的车牌样本对待识别的图像进行匹配,得到匹配度最高的车牌标识。
本文将介绍基于模板匹配的车牌识别算法,并给出Matlab实现代码。该算法具有简单快速、易于实现的特点,并且具有良好的通用性和鲁棒性。
一、算法流程
基于模板匹配的车牌识别算法的流程如下:
-
读取图片并进行预处理:读取待识别的车牌图片,并进行预处理,包括灰度化、二值化、滤波等操作,得到处理后的二值化车牌图像。
-
提取车牌字符:利用形态学运算对二值化车牌图像进行处理,得到提取出来的字符区域,并将其归一化为固定大小。
-
模板匹配:将待匹配的字符与预先存储的模板进行匹配,并计算匹配度。选择匹配度最高的模板作为当前字符的识别结果。
-
车牌识别:将所有字符的识别结果组合成完整的车牌标识,并输