双树复小波变换图像融合算法及matlab实现
在图像融合中,常常需要将多幅图像融合成一幅具有更多信息的图像。其中,双树复小波变换是一种流行的图像融合算法之一。本文将介绍基于双树复小波变换的像素级图像融合算法及其matlab实现。
一、 双树复小波变换
双树复小波变换(Dual-Tree Complex Wavelet Transform, DTCWT)是一种变换方法,用于将信号或图像分解成不同尺度的频率成分,以进行分析和处理。与传统的小波变换相比,双树复小波变换具有对称、平衡性、近似零相位等特点,被广泛应用于图像处理领域。
二、 图像融合算法
图像融合通常包括两个步骤:变换和合成。变换是将多幅输入图像转换为新的表示形式,合成是将这些转换后的表示组合成一幅输出图像。在双树复小波变换下,我们可以使用以下步骤来实现图像融合:
-
对输入的多幅图像进行双树复小波变换,获得每个子带系数。
-
使用某种融合规则(如平均值、最大值等)将相同位置的子带系数进行融合。
-
对已融合的子带系数进行逆变换,得到融合后的图像。
三、matlab实现
使用matlab实现基于双树复小波变换的像素级图像融合算法可以简单地通过调用Wavelet Toolbox中的函数来实现。下面是一个简单的示例: