深度学习在茶叶疾病分类与癫痫发作分类中的应用
茶叶疾病分类中的卷积神经网络
在茶叶种植过程中,准确识别茶叶疾病对于保障茶叶产量和质量至关重要。传统的人工识别方法不仅耗时,而且成本较高。因此,利用图像分类技术实现茶叶疾病的自动检测成为了研究热点。
卷积神经网络(CNN)架构
CNN是一种非常适合处理数字图像中网格状数据的深度学习工具。它主要由卷积层、池化层和全连接层组成。
- 卷积层 :是CNN架构的基本组成部分,通过卷积操作和激活函数等线性和非线性函数进行特征提取。具体来说,在张量的每个位置,将核与输入张量的元素乘积相加,得到的输出称为特征图。通过应用多个核,可以形成任意数量的特征图,这些特征图代表了输入张量的不同特征,可看作不同的特征提取器。
- 池化层 :是CNN的第二层,提供典型的下采样操作,可降低平面特征图的维度,减少后续可学习参数的数量。池化层不包含可学习参数,而是包含类似于卷积操作的超参数,如滤波器大小、填充和步幅。
- 全连接层 :在卷积层提取特征和池化层进行下采样后,全连接层的一个子集将分类任务中每个类别的特征(如概率)映射到网络的最终输出。最后一个全连接层通常具有与类别数量相等的输出节点。每个全连接层后面都跟着一个非线性函数——修正线性单元(ReLu)。
训练参数
- 修正线性单元(ReLu) :是深度学习模型中最常用的激活函数,对于负输入返回‘0’,对于正输入返回其值,其函数表达式为 (f(x) = max(0, x))。
订阅专栏 解锁全文
51

被折叠的 条评论
为什么被折叠?



