PDE2020补考题目

PDE2020补考试题自做答案

判断

1. 波动方程的解是以有限速度传播的

正确

2. 极值原理可用于研究波动方程解的唯一性

错误。极值原理通常用于判断椭圆型和抛物型偏微分方程解的性质,如解的唯一性和连续性。然而,对于波动方程,这种原理并不适用。

3. 广义函数的弱广义微商不属于广义函数空间

错误。广义函数(也称为分布)的弱导数或弱微商仍然属于广义函数空间。

广义函数或分布的概念主要是为了处理一些在传统意义上无法定义导数的函数,如狄拉克 δ δ δ 函数。广义函数的弱微商是通过将导数的作用转移给测试函数来定义的。具体来说,如果 T T T 是一个广义函数,其弱微商 T ′ T' T 定义为满足以下条件的广义函数:对于所有光滑且具有紧支集的测试函数 ϕ \phi ϕ,有 ⟨ T ′ , ϕ ⟩ = − ⟨ T , ϕ ′ ⟩ \langle T', \phi \rangle = -\langle T, \phi' \rangle T,ϕ=T,ϕ这里的 ⟨ ⋅ , ⋅ ⟩ \langle \cdot, \cdot \rangle ,表示广义函数和测试函数之间的作用。

弱微商 T ′ T' T 通过这种方式定义,保证了它仍然是一个广义函数。实际上,广义函数的微分操作不会使其超出广义函数的范畴。因此,广义函数的任何阶的弱微商都仍然是广义函数空间的成员。

4. 位势方程第二边值问题的表示

Ω \Omega Ω 上的位势方程第二边值问题可表示为 { − Δ u = f , u ∣ ∂ Ω = φ \left\{ \begin{array}{rl} -\Delta u = f, \\ u|_{\partial \Omega} = \varphi \end{array} \right. {Δu=f,uΩ=φ

错误,这是第一边值问题的表示。

5. 一阶 PDE 解的存在唯一性判断

定解问题 { ∂ u ∂ t − ∂ u ∂ x = f , 0 < x < 2 ,   0 < t < 2 , u ( x , 0 ) = φ ( x ) , 0 ≤ x ≤ 2 , u ( 0 , t ) = g ( t ) , 0 ≤ t ≤ 2. \left\{ \begin{aligned} \frac{\partial u}{\partial t} - \frac{\partial u}{\partial x} &= f, & 0 < x < 2, \ 0 < t < 2, \\ u(x, 0) &= \varphi(x), & 0 \leq x \leq 2, \\ u(0, t) &= g(t), & 0 \leq t \leq 2. \end{aligned} \right. tuxuu(x,0)u(0,t)=f,=φ(x),=g(t),0<x<2, 0<t<2,0x2,0t2. 的解存在唯一

错误。因为没有给出具体的 φ ( x ) \varphi(x) φ(x) g ( t ) g(t) g(t),所以无法检查初始条件和边界条件的相容性,即 φ ( 0 ) = g ( 0 ) \varphi(0) = g(0) φ(0)=g(0)。如果这个相容性条件满足,那么通常可以期望该问题有唯一解。所以无法判断这个定解问题的存在唯一性。

6. Sobolev \text{Sobolev} Sobolev 空间 H 1 ( Ω ) H^{1}(\Omega) H1(Ω) 中的任意一个 Cauchy \text{Cauchy} Cauchy 列都是收敛的

正确。 H 1 ( Ω ) H^{1}(\Omega) H1(Ω) 是完备的,这个说法正是完备性的定义。

7. 变分问题是求解一般函数的极值问题

错误。变分问题是求解泛函的极值问题。

8. u ∈ C 2 ( Ω ‾ ) u\in C^2(\overline{\Omega}) uC2(Ω) 且在 Ω \Omega Ω 上满足 − Δ u = 0 -\Delta u =0 Δu=0,则 u u u 只能在 Ω \Omega Ω 边界取到它在 Ω ‾ \overline{\Omega} Ω 上的最大值和最小值

正确。这是对椭圆型偏微分方程的极值原理的一个描述。具体来说,这是拉普拉斯方程(即调和函数)的极值原理。

如果 u ∈ C 2 ( Ω ‾ ) u \in C^2(\overline{\Omega}) uC2(Ω) 并且在 Ω \Omega Ω 上满足 − Δ u = 0 -\Delta u = 0 Δu=0,则 u u u 称为调和函数。调和函数在其定义域内部不能取得局部最大值或最小值,除非它是常数。这意味着,对于非常数调和函数,其最大值和最小值只能在定义域的边界上取到。这是最大值原理的一个特例。

总结一下,如果 u u u Ω \Omega Ω 上的调和函数且 u u u 两次连续可微,那么 u u u 的最大值和最小值只能在 Ω \Omega Ω 的边界上取得,除非 u u u 是一个常数函数。这个性质在偏微分方程的理论和应用中是非常重要的。

选择与填空

1. u t t + 2 u x y + 2 u z z + 3 u y = f u_{tt} + 2u_{xy} + 2u_{zz} + 3u_y = f utt+2uxy+2uzz+3uy=f 的二阶项系数矩阵

对于二阶偏导数的系数矩阵,只考虑形如 u t t u_{tt} utt, u x x u_{xx} uxx, u y y u_{yy} uyy, u z z u_{zz} uzz, u t x u_{tx} utx, u t y u_{ty} uty, u t z u_{tz} utz, u x y u_{xy} uxy, u x z u_{xz} uxz, u y z u_{yz} uyz 的项。方程中只显示了 u t t u_{tt} utt, u x y u_{xy} uxy u z z u_{zz} uzz,其他项如 u x x u_{xx} uxx, u y y u_{yy} uyy 等没有出现,它们的系数为 0 0 0

对于一个包含四个变量 t , x , y , z t, x, y, z t,x,y,z 的系统,二阶项系数矩阵为一个 4 × 4 4\times4 4×4 矩阵。根据上述方程:

  • u t t u_{tt} utt 的系数为 1 1 1
  • u x y u_{xy} uxy 的系数为 2 2 2,表示 x x x y y y 之间的混合导数。
  • u z z u_{zz} uzz 的系数为 2 2 2

所以,矩阵的行和列在代表变量 t , x , y , z t, x, y, z t,x,y,z 的顺序时,二阶项系数矩阵为:

[ 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 2 ] \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} 1000001001000002

矩阵中的非零元素:

  • ( 1 , 1 ) (1,1) (1,1) 位置的 1 1 1 表示 u t t u_{tt} utt 的系数。
  • ( 2 , 3 ) (2,3) (2,3) ( 3 , 2 ) (3,2) (3,2) 位置的 1 1 1 表示 u x y u_{xy} uxy 的系数,因为它是对称的。
  • ( 4 , 4 ) (4,4) (4,4) 位置的 2 2 2 表示 u z z u_{zz} uzz 的系数。

而如果矩阵的行和列在代表变量 x , y , z , t x, y, z,t x,y,z,t 的顺序时,二阶项系数矩阵为:

[ 0 1 0 0 1 0 0 0 0 0 2 0 0 0 0 1 ] \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} 0100100000200001

2. 判断这个方程 ∂ u ∂ x + ( ∂ u ∂ y ) 2 − ∂ u ∂ y = x y \frac{\partial u}{\partial x} + \left(\frac{\partial u}{\partial y}\right)^2 - \frac{\partial u}{\partial y} = xy xu+(yu)2yu=xy

A,E,G \text{A,E,G} A,E,G 一阶,完全非线性,非齐次

3. Dirac \text{Dirac} Dirac 函数

δ ( x ) = { ∞ , x = 0 0 , otherwise \delta(x)=\left\{ \begin{aligned} & \infty,\quad x=0\\ & 0,\quad \text{otherwise} \end{aligned} \right. δ(x)={,x=00,otherwise

⟨ δ ( x ) + 2 x , e − x 2 ⟩ \langle \delta(x) + 2x, e^{-x^2} \rangle δ(x)+2x,ex2

也就是要计算的是如下积分: ∫ − ∞ ∞ ( δ ( x ) + 2 x ) e − x 2   d x \int_{-\infty}^{\infty} (\delta(x) + 2x) e^{-x^2} \, dx (δ(x)+2x)ex2dx这个积分实际上分为两个部分:

  1. ∫ − ∞ ∞ δ ( x ) e − x 2   d x \int_{-\infty}^{\infty} \delta(x)e^{-x^2} \, dx δ(x)ex2dx,由于 δ δ δ 函数的取样特性,这部分简化为 e − x 2 e^{-x^2} ex2 x = 0 x = 0 x=0 的值,也就是 e 0 = 1 e^0 = 1 e0=1

  2. ∫ − ∞ ∞ 2 x e − x 2   d x \int_{-\infty}^{\infty} 2x e^{-x^2} \, dx 2xex2dx,这个积分是一个奇函数的积分,因为函数 2 x e − x 2 2x e^{-x^2} 2xex2 x x x 轴上是奇对称的,其积分从 − ∞ -\infty + ∞ +\infty + 的结果为0。

因此,整个表达式的值是这两部分结果的和: ⟨ δ ( x ) + 2 x , e − x 2 ⟩ = 1 + 0 = 1 \langle \delta(x) + 2x, e^{-x^2} \rangle = 1 + 0 = 1 δ(x)+2x,ex2=1+0=1

附注: δ δ δ 函数的取样特性 ∫ − ∞ ∞ f ( x ) δ ( x − a )   d x = f ( a ) \int_{-\infty}^{\infty} f(x) \delta(x-a) \, dx = f(a) f(x)δ(xa)dx=f(a)

4.偏微分方程的适定性:存在性、唯一性、稳定性

5. 一阶 PDE 特征线求解

{ ∂ u ∂ t − ∂ u ∂ x = u , t > 0 , − ∞ < x < ∞ u ( x , 0 ) = sin ⁡ ( x ) , − ∞ < x < ∞ \left\{ \begin{aligned} &\frac{\partial u}{\partial t}-\frac{\partial u}{\partial x}=u,\quad t>0,-\infty<x<\infty\\ &u(x,0)=\sin(x),\quad -\infty<x<\infty \end{aligned} \right. tuxu=u,t>0,<x<u(x,0)=sin(x),<x<特征线表达式 x = − t + C x=-t+C x=t+C

沿着该特征线,问题可化为 { d u ( x ( t , C ) , t ) d t − u = 0 u ( x ( 0 , C ) , 0 ) = sin ⁡ ( C ) \left\{ \begin{aligned} &\frac{du(x(t,C),t)}{dt}-u=0\\ & u(x(0,C),0)=\sin(C) \end{aligned} \right. dtdu(x(t,C),t)u=0u(x(0,C),0)=sin(C)最终的解为 u ( x , t ) = sin ⁡ ( x + t ) e t u(x,t)=\sin(x+t)e^t u(x,t)=sin(x+t)et

6. Fourier \text{Fourier} Fourier 变换

一维 Fourier \text{Fourier} Fourier 变换的定义: f ^ ( λ ) = 1 2 π ∫ − ∞ ∞ f ( x ) e − i λ x d x \hat{f}(\lambda)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)e^{-i\lambda x}dx f^(λ)=2π 1f(x)exdx

f ( x ) f(x) f(x) 对应的 f ^ ( λ ) = 1 2 π ∫ − 1 1 2 ⋅ e − i λ x d x \hat{f}(\lambda)=\frac{1}{\sqrt{2\pi}}\int_{-1}^{1}2\cdot e^{-i\lambda x}dx f^(λ)=2π 1112exdx

= 2 π ⋅ − 1 i λ ( e − i λ − e i λ ) \quad \quad \quad \quad \quad \quad \quad=\sqrt{\frac{2}{\pi}}\cdot -\frac{1}{i\lambda}(e^{-i\lambda}-e^{i\lambda}) =π2 1(ee)

= 2 π ⋅ − 1 i λ ⋅ ( − 2 i sin ⁡ λ ) \quad \quad \quad \quad \quad \quad \quad=\sqrt{\frac{2}{\pi}}\cdot -\frac{1}{i\lambda}\cdot (-2i\sin\lambda) =π2 1(2isinλ)

= 2 2 π sin ⁡ λ λ \quad \quad \quad \quad \quad \quad \quad=2\sqrt{\frac{2}{\pi}}\frac{\sin\lambda}{\lambda} =2π2 λsinλ

( f ∗ f ) ^ = 2 π ( f ^ ) 2 = 2 π ⋅ ( 2 2 π sin ⁡ λ λ ) 2 = 8 2 π sin ⁡ 2 λ λ 2 (f*f)^{\hat{}}=\sqrt{2\pi}(\hat{f})^2=\sqrt{2\pi}\cdot(2\sqrt{\frac{2}{\pi}}\frac{\sin\lambda}{\lambda})^2=8\sqrt{\frac{2}{\pi}}\frac{\sin^2\lambda}{\lambda^2} (ff)^=2π (f^)2=2π (2π2 λsinλ)2=8π2 λ2sin2λ

7. 求 Green \text{Green} Green 函数

G ( x , y ; ξ , η ) = Γ ( x , y ; ξ , η ) − Γ ( x , y ; − ξ , η ) + Γ ( x , y ; − ξ , − η ) − Γ ( x , y ; ξ , − η ) G(x,y;\xi,\eta)=\Gamma(x,y;\xi,\eta)-\Gamma(x,y;-\xi,\eta)+\Gamma(x,y;-\xi,-\eta)-\Gamma(x,y;\xi,-\eta) G(x,y;ξ,η)=Γ(x,y;ξ,η)Γ(x,y;ξ,η)+Γ(x,y;ξ,η)Γ(x,y;ξ,η)

计算

1. 求解下面这个定解问题,

{ u t t − a 2 u x x = 0 , t > 0 , x > 0 , u ( x , 0 ) = sin ⁡ ( x ) + 2 x , x ≥ 0 , u t ( x , 0 ) = cos ⁡ ( x ) , x ≥ 0 , u x ( 0 , t ) = 2 , t ≥ 0. \begin{cases} u_{tt} - a^2 u_{xx} = 0, & t > 0, x > 0, \\ u(x, 0) = \sin(x) + 2x, & x \geq 0, \\ u_t(x, 0) = \cos(x), & x \geq 0, \\ u_x(0, t) = 2, & t \geq 0. \end{cases} utta2uxx=0,u(x,0)=sin(x)+2x,ut(x,0)=cos(x),ux(0,t)=2,t>0,x>0,x0,x0,t0.

1.1 首先将边界条件化为齐次的关于 v v v 的定解问题

可以构造一个辅助函数 v ( x , t ) v(x,t) v(x,t),使得 u ( x , t ) = v ( x , t ) + w ( x , t ) u(x,t) = v(x,t) + w(x,t) u(x,t)=v(x,t)+w(x,t),其中 w ( x , t ) w(x,t) w(x,t) 是一个我们预先定义的函数,用以满足非齐次的边界条件。接下来,确定 w ( x , t ) w(x,t) w(x,t) 的形式,从而使得 v ( x , t ) v(x,t) v(x,t) 的边界条件是齐次的。

步骤 1: 定义 w ( x , t ) w(x,t) w(x,t)

由于给定的边界条件是 u x ( 0 , t ) = 2 u_x(0, t) = 2 ux(0,t)=2,我们可以尝试选择一个关于 x x x 的线性函数作为 w ( x , t ) w(x,t) w(x,t) 的一部分,以直接满足这一条件。我们选择 w ( x , t ) = 2 x w(x,t) = 2x w(x,t)=2x,这样 w x ( 0 , t ) = 2 w_x(0, t) = 2 wx(0,t)=2,完全满足边界条件。

步骤 2: 确认 w ( x , t ) w(x,t) w(x,t) 是否满足初始条件

接下来,我们需要检查 w ( x , t ) w(x,t) w(x,t) 对初始条件的影响:

  • 初始位移: u ( x , 0 ) = sin ⁡ ( x ) + 2 x = v ( x , 0 ) + w ( x , 0 ) = v ( x , 0 ) + 2 x u(x, 0) = \sin(x) + 2x = v(x, 0) + w(x, 0) = v(x, 0) + 2x u(x,0)=sin(x)+2x=v(x,0)+w(x,0)=v(x,0)+2x。因此, v ( x , 0 ) = sin ⁡ ( x ) v(x, 0) = \sin(x) v(x,0)=sin(x)
  • 初始速度: u t ( x , 0 ) = cos ⁡ ( x ) = v t ( x , 0 ) + w t ( x , 0 ) u_t(x, 0) = \cos(x) = v_t(x, 0) + w_t(x, 0) ut(x,0)=cos(x)=vt(x,0)+wt(x,0)。由于 w ( x , t ) w(x,t) w(x,t) 与时间 t t t 无关,故 w t ( x , 0 ) = 0 w_t(x, 0) = 0 wt(x,0)=0。因此, v t ( x , 0 ) = cos ⁡ ( x ) v_t(x, 0) = \cos(x) vt(x,0)=cos(x)

步骤 3: 确认 v ( x , t ) v(x,t) v(x,t) 的边界条件

对于 v ( x , t ) v(x,t) v(x,t) 的边界条件,我们已经通过选择 w ( x , t ) w(x,t) w(x,t) 满足了 u x ( 0 , t ) = 2 u_x(0,t) = 2 ux(0,t)=2 的条件。因此,我们需要 v x ( 0 , t ) = 0 v_x(0,t) = 0 vx(0,t)=0 使得 u x ( 0 , t ) = v x ( 0 , t ) + w x ( 0 , t ) = 0 + 2 = 2 u_x(0,t) = v_x(0,t) + w_x(0,t) = 0 + 2 = 2 ux(0,t)=vx(0,t)+wx(0,t)=0+2=2

结果: 关于 v ( x , t ) v(x,t) v(x,t) 的定解问题

现在 u ( x , t ) = v ( x , t ) + 2 x u(x,t) = v(x,t) + 2x u(x,t)=v(x,t)+2x,且 v ( x , t ) v(x,t) v(x,t) 必须满足以下定解问题:

{ v t t − a 2 v x x = 0 , t > 0 , x > 0 , v ( x , 0 ) = sin ⁡ ( x ) , x ≥ 0 , v t ( x , 0 ) = cos ⁡ ( x ) , x ≥ 0 , v x ( 0 , t ) = 0 , t ≥ 0. \begin{cases} v_{tt} - a^2 v_{xx} = 0, & t > 0, x > 0, \\ v(x, 0) = \sin(x), & x \geq 0, \\ v_t(x, 0) = \cos(x), & x \geq 0, \\ v_x(0, t) = 0, & t \geq 0. \end{cases} vtta2vxx=0,v(x,0)=sin(x),vt(x,0)=cos(x),vx(0,t)=0,t>0,x>0,x0,x0,t0.

这是因为 u t t − a 2 u x x = v t t − a 2 v x x u_{tt} - a^2 u_{xx} = v_{tt} - a^2 v_{xx} utta2uxx=vtta2vxx,而 w ( x , t ) = 2 x w(x,t) = 2x w(x,t)=2x 是一个只与 x x x 相关的线性函数,其二阶导数等于零,不影响方程的齐次性。因此,原问题转化为求解这个关于 v ( x , t ) v(x,t) v(x,t) 的定解问题。

2.求解热传导方程

{ u t − u x x = 0 , 0 < x < 1 , t > 0 u ( x , 0 ) = sin ⁡ ( x ) , 0 ≤ x ≤ 1 , u ( 0 , t ) = 0 , u ( 1 , t ) = 0 , t ≥ 0. \begin{equation} \begin{cases} u_t - u_{xx} = 0, & 0 < x < 1, t > 0 \\ u(x, 0) = \sin(x), & 0 \leq x \leq 1, \\ u(0, t) = 0, u(1, t) = 0, & t \geq 0. \end{cases} \end{equation} utuxx=0,u(x,0)=sin(x),u(0,t)=0,u(1,t)=0,0<x<1,t>00x1,t0.

根据提供的问题和边界条件,存在一定的矛盾:

  1. 初始条件 u ( x , 0 ) = sin ⁡ ( x ) u(x, 0) = \sin(x) u(x,0)=sin(x)
  2. 边界条件 u ( 0 , t ) = 0 u(0, t) = 0 u(0,t)=0 u ( 1 , t ) = 0 u(1, t) = 0 u(1,t)=0

初始条件 u ( x , 0 ) = sin ⁡ ( x ) u(x,0)=\sin(x) u(x,0)=sin(x) 带入 x = 1 x=1 x=1 u ( 1 , 0 ) = sin ⁡ ( 1 ) ≠ 0 u(1, 0) = \sin(1) \neq 0 u(1,0)=sin(1)=0

而边界条件 u ( 1 , t ) = 0 u(1,t)=0 u(1,t)=0 带入 t = 0 t=0 t=0 u ( 1 , 0 ) = 0 u(1, 0) = 0 u(1,0)=0

初始条件和边界条件关于 u ( 1 , 0 ) u(1,0) u(1,0) 是否等于 0 0 0 矛盾。

如果初始条件是 u ( x , 0 ) = sin ⁡ ( π x ) u(x, 0) = \sin(\pi x) u(x,0)=sin(πx),则完美符合所有给定的边界条件:

  • u ( 0 , 0 ) = sin ⁡ ( 0 ) = 0 u(0, 0) = \sin(0) = 0 u(0,0)=sin(0)=0
  • u ( 1 , 0 ) = sin ⁡ ( π ) = 0 u(1, 0) = \sin(\pi) = 0 u(1,0)=sin(π)=0

下面根据初始条件 u ( x , 0 ) = sin ⁡ ( π x ) u(x, 0) = \sin(\pi x) u(x,0)=sin(πx) 对方程进行求解。

为了利用分离变量法求解这个偏微分方程,可以假设解的形式为 u ( x , t ) = X ( x ) T ( t ) u(x, t) = X(x) T(t) u(x,t)=X(x)T(t)。将此形式带入偏微分方程中,得到:
X ( x ) T ′ ( t ) − X ′ ′ ( x ) T ( t ) = 0. X(x) T'(t) - X''(x) T(t) = 0. X(x)T(t)X′′(x)T(t)=0.
将这个方程两边同时除以 X ( x ) T ( t ) X(x)T(t) X(x)T(t) (假设 X ( x ) X(x) X(x) T ( t ) T(t) T(t) 不为0),得到:
T ′ ( t ) T ( t ) = X ′ ′ ( x ) X ( x ) . \frac{T'(t)}{T(t)} = \frac{X''(x)}{X(x)}. T(t)T(t)=X(x)X′′(x).
由于左边只依赖于 t t t,而右边只依赖于 x x x,这意味着它们都等于同一个常数,通常设这个常数为 − λ -\lambda λ
T ′ ( t ) T ( t ) = − λ , X ′ ′ ( x ) X ( x ) = − λ . \frac{T'(t)}{T(t)} = -\lambda, \quad \frac{X''(x)}{X(x)} = -\lambda. T(t)T(t)=λ,X(x)X′′(x)=λ.

首先求解 X ( x ) X(x) X(x) 的方程:
X ′ ′ ( x ) + λ X ( x ) = 0 , X''(x) + \lambda X(x) = 0, X′′(x)+λX(x)=0,
边界条件为:
X ( 0 ) = 0 , X ( 1 ) = 0. X(0) = 0, \quad X(1) = 0. X(0)=0,X(1)=0.
这是一个 Sturm-Liouville \text{Sturm-Liouville} Sturm-Liouville 问题。对于边界条件 X ( 0 ) = 0 X(0) = 0 X(0)=0 X ( 1 ) = 0 X(1) = 0 X(1)=0,非平凡解存在的条件是 λ \lambda λ 必须是正数,设 λ = k 2 \lambda = k^2 λ=k2。于是方程变为:
X ′ ′ ( x ) + k 2 X ( x ) = 0. X''(x) + k^2 X(x) = 0. X′′(x)+k2X(x)=0.
其解为 X ( x ) = A sin ⁡ ( k x ) + B cos ⁡ ( k x ) X(x) = A \sin(kx) + B \cos(kx) X(x)=Asin(kx)+Bcos(kx). 由 X ( 0 ) = 0 X(0) = 0 X(0)=0 B = 0 B = 0 B=0,所以
X ( x ) = A sin ⁡ ( k x ) . X(x) = A \sin(kx). X(x)=Asin(kx).
X ( 1 ) = 0 X(1) = 0 X(1)=0 sin ⁡ ( k ) = 0 \sin(k) = 0 sin(k)=0,即 k = n π k = n\pi k= n n n 为整数)。

接着,求解 T ( t ) T(t) T(t) 的方程:
T ′ ( t ) + λ T ( t ) = 0 , λ = ( n π ) 2 . T'(t) + \lambda T(t) = 0, \quad \lambda = (n\pi)^2. T(t)+λT(t)=0,λ=()2.
解为:
T ( t ) = C e − ( n π ) 2 t . T(t) = C e^{-(n\pi)^2 t}. T(t)=Ce()2t.

综合这些信息,得到一般解的形式为:
u ( x , t ) = ∑ n = 1 ∞ A n sin ⁡ ( n π x ) e − ( n π ) 2 t . u(x, t) = \sum_{n=1}^\infty A_n \sin(n\pi x) e^{-(n\pi)^2 t}. u(x,t)=n=1Ansin(x)e()2t.

最后,需要用初始条件 u ( x , 0 ) = sin ⁡ ( x ) u(x, 0) = \sin(x) u(x,0)=sin(x) 来确定系数 A n A_n An。由初始条件,有
u ( x , 0 ) = ∑ n = 1 ∞ A n sin ⁡ ( n π x ) = sin ⁡ ( x ) . u(x, 0) = \sum_{n=1}^\infty A_n \sin(n\pi x) = \sin(x). u(x,0)=n=1Ansin(x)=sin(x).
比较两边, A 1 = 1 A_1 = 1 A1=1 且对于 n ≠ 1 n \neq 1 n=1 A n = 0 A_n = 0 An=0。因此,特定解为:
u ( x , t ) = sin ⁡ ( π x ) e − π 2 t . u(x, t) = \sin(\pi x) e^{-\pi^2 t}. u(x,t)=sin(πx)eπ2t.

这就是问题的解。

3. 变分问题解的存在唯一性证明和等价边值问题的导出

Ω \Omega Ω R 2 \mathbb{R}^2 R2 中的一个有界开集,其光滑边界用 Γ \Gamma Γ 表示。 Ω \Omega Ω 上定义的泛函为: J ( v ) = 1 2 ∬ Ω [ v 2 + ( v x ) 2 + ( v y ) 2 ]   d x   d y + ∫ Γ ( 1 2 σ v 2 − g v )   d s J(v) = \frac{1}{2}\iint_\Omega \left[v^2 + (v_x)^2 + (v_y)^2 \right]\, dx\,dy + \int_{\Gamma} \left( \frac{1}{2}\sigma v^2 - gv \right) \, ds J(v)=21Ω[v2+(vx)2+(vy)2]dxdy+Γ(21σv2gv)ds其中 σ ∈ C ( Γ ) , g ∈ C ( Γ ) \sigma\in C(\Gamma),g\in C(\Gamma) σC(Γ)gC(Γ),且 0 < σ 0 < σ < σ 1 < + ∞ 0<\sigma_0<\sigma<\sigma_1<+\infty 0<σ0<σ<σ1<+

变分问题的描述为:求 u ∈ H 1 ( Ω ) u\in H^{1}(\Omega) uH1(Ω),使得 J ( u ) = min ⁡ v ∈ H 1 ( Ω ) J ( v ) J(u)=\min_{v\in H^{1}(\Omega)}J(v) J(u)=vH1(Ω)minJ(v)(1) 证明这个变分问题的解存在唯一

(2) 若解 u ∈ C 1 ( Ω ‾ ) ∩ C 2 ( Ω ) u\in C^1(\overline{\Omega})\cap C^2(\Omega) uC1(Ω)C2(Ω),请导出与此变分问题等价的边值问题。

(1) 证明泛函 J J J H 1 ( Ω ) H^{1}(\Omega) H1(Ω) 上有下确界

为了证明泛函 J J J H 1 ( Ω ) H^{1}(\Omega) H1(Ω) 上有下确界,我们需要证明对于任意 v ∈ H 1 ( Ω ) v \in H^{1}(\Omega) vH1(Ω) J ( v ) J(v) J(v) 的值有一个下界。根据泛函 J J J 的定义:

J ( v ) = 1 2 ∣ ∣ v ∣ ∣ H 1 ( Ω ) 2 + ∫ Γ ( 1 2 σ v 2 − g v ) d s J(v) = \frac{1}{2}||v||_{H_{1}(\Omega)}^{2} + \int_{\Gamma}(\frac{1}{2}\sigma v^2 - gv)ds J(v)=21∣∣vH1(Ω)2+Γ(21σv2gv)ds

首先,我们考虑泛函的第一部分,即 ∣ ∣ v ∣ ∣ H 1 ( Ω ) 2 ||v||_{H_{1}(\Omega)}^{2} ∣∣vH1(Ω)2,这是 H 1 ( Ω ) H^{1}(\Omega) H1(Ω) 中元素的平方范数,显然是非负的。所以,这一部分对泛函 J ( v ) J(v) J(v) 的值起着一个非负的贡献。

所以 J ( v ) = 1 2 ∣ ∣ v ∣ ∣ H 1 ( Ω ) 2 + ∫ Γ ( 1 2 σ v 2 − g v ) d s J(v) = \frac{1}{2}||v||_{H_{1}(\Omega)}^{2} + \int_{\Gamma}(\frac{1}{2}\sigma v^2 - gv)ds J(v)=21∣∣vH1(Ω)2+Γ(21σv2gv)ds ≥ ∫ Γ ( 1 2 σ v 2 − g v ) d s = ∫ Γ 1 2 ( σ v 2 − 2 σ v ⋅ g 1 σ + g 2 σ ) − g 2 2 σ d s \geq \int_{\Gamma}(\frac{1}{2}\sigma v^2 - gv)ds=\int_{\Gamma}\frac{1}{2}(\sigma v^2-2\sqrt{\sigma}v\cdot g\frac{1}{\sqrt{\sigma}}+\frac{g^2}{\sigma})-\frac{g^2}{2\sigma}ds Γ(21σv2gv)ds=Γ21(σv22σ vgσ 1+σg22σg2ds = ∫ Γ 1 2 ( σ v − g 1 σ ) 2 − g 2 2 σ d s =\int_{\Gamma}\frac{1}{2}(\sqrt{\sigma}v-g\frac{1}{\sqrt{\sigma}})^2-\frac{g^2}{2\sigma}ds =Γ21(σ vgσ 1)22σg2ds ≥ − ∫ Γ − 1 2 σ g 2 d s     ( 因为 1 2 ( σ v − g 1 σ ) 2 是非负项 ) \geq- \int_{\Gamma}-\frac{1}{2\sigma}g^2ds\ \ \ (因为\frac{1}{2}(\sqrt{\sigma}v-g\frac{1}{\sqrt{\sigma}})^2是非负项) Γ2σ1g2ds   (因为21(σ vgσ 1)2是非负项)

所以 J J J H 1 ( Ω ) H_1(\Omega) H1(Ω) 有下确界,不妨设 m = inf ⁡ v ∈ H 1 ( Ω ) J ( v ) m=\inf_{v\in H^{1}(\Omega)}J(v) m=infvH1(Ω)J(v),那么由下确界的定义, ∀ k ∈ N + ,   ∃ u k ∈ H 1 ( Ω ) \forall k\in\mathbb{N}_+,\ \exists u_{k}\in H^{1}(\Omega) kN+, ukH1(Ω) 使得 m ≤ J ( u k ) = 1 2 ∣ ∣ u k ∣ ∣ H 1 ( Ω ) 2 + ∫ Γ ( 1 2 σ u k 2 − g u k ) d s < m + 1 k m\leq J(u_{k})=\frac{1}{2}||u_{k}||_{H_{1}(\Omega)}^{2}+\int_{\Gamma}(\frac{1}{2}\sigma u_{k}^2-gu_{k})ds<m+\frac{1}{k} mJ(uk)=21∣∣ukH1(Ω)2+Γ(21σuk2guk)ds<m+k1

(2) 证明 { u k } \{u_k\} {uk} H 1 ( Ω ) H^1(\Omega) H1(Ω) 中的基本列,也即变分问题解的存在性

首先,根据引理 3.4 3.4 3.4 的等式,有 J ( u k ) + J ( u l ) − 2 J ( u k + u l 2 ) = ∣ ∣ ∇ ( u k − u l ) 2 ∣ ∣ L 2 ( Ω ) 2 ≥ 0 J(u_k)+J(u_l)-2J(\frac{u_k+u_l}{2})=||\frac{\nabla(u_k-u_l)}{2}||_{L_{2}(\Omega)}^{2}\geq0 J(uk)+J(ul)2J(2uk+ul)=∣∣2(ukul)L2(Ω)20

∀ k , l ∈ N + \forall k,l\in\mathbb{N}_+ k,lN+
J ( u k ) + J ( u l ) − 2 J ( u k + u l 2 ) ≤ m + 1 k + m + 1 l − 2 m = 1 k + 1 l J(u_k)+J(u_l)-2J(\frac{u_k+u_l}{2})\leq m+\frac{1}{k}+m+\frac{1}{l}-2m=\frac{1}{k}+\frac{1}{l} J(uk)+J(ul)2J(2uk+ul)m+k1+m+l12m=k1+l1这里是因为第一步证明出了下确界后,根据下确界的定义有 J ( u k ) < m + 1 k J(u_{k})<m+\frac{1}{k} J(uk)<m+k1 同理对 u l u_l ul 也是,而又因为 J J J 的下确界是 m m m 所以 2 J ( u k + u l 2 ) ≥ 2 m 2J(\frac{u_k+u_l}{2})\geq 2m 2J(2uk+ul)2m − 2 J ( u k + u l 2 ) ≤ − 2 m -2J(\frac{u_k+u_l}{2})\leq -2m 2J(2uk+ul)2m 所以得到上面的不等式

得到了 J ( u k ) + J ( u l ) − 2 J ( u k + u l 2 ) J(u_k)+J(u_l)-2J(\frac{u_k+u_l}{2}) J(uk)+J(ul)2J(2uk+ul) 的不等式关系后,再把其利用平行四边形等式进行展开,

并将 d x dx dx d s ds ds 进行合并化简,拼凑 ∣ ∣ u k − u l ∣ ∣ L 2 ( Ω ) 2 ||u_k-u_l||_{L_2(\Omega)}^{2} ∣∣ukulL2(Ω)2

这里贴一下公式 ∣ ∣ u ∣ ∣ H 1 ( Ω ) 2 = ∫ Ω u 2 d x + ∫ Ω ∣ ∇ u ∣ 2 d x ||u||_{H_1(\Omega)}^{2}=\int_{\Omega}u^2dx+\int_{\Omega}|\nabla u|^2dx ∣∣uH1(Ω)2=Ωu2dx+Ω∣∇u2dx x x x 是向量,这里把泛函 J ( v ) J(v) J(v) 的表达式形式用这种形式表示 J ( v ) = 1 2 ∫ Ω v 2 + ∣ ∇ v ∣ 2 d x + ∫ Γ 1 2 σ v 2 − g v d s J(v)=\frac{1}{2}\int_{\Omega}v^2+|\nabla v|^2dx+\int_{\Gamma}\frac{1}{2}\sigma v^2-gvds J(v)=21Ωv2+∣∇v2dx+Γ21σv2gvds J ( u k ) , J ( u l ) , − 2 J ( u k + u l 2 ) J(u_k),J(u_l),-2J(\frac{u_k+u_l}{2}) J(uk),J(ul),2J(2uk+ul) 分别带进去,计算量比较大,化简后凑完全平方 ( u k − u l ) 2 (u_k-u_l)^2 (ukul)2 最终得到

J ( u k ) + J ( u l ) − 2 J ( u k + u l 2 ) = 1 4 ∫ Ω ( u k − u l ) 2 + ∣ ∇ ( u k − u l ) ∣ 2 d x J(u_k)+J(u_l)-2J(\frac{u_k+u_l}{2})=\frac{1}{4}\int_{\Omega}(u_k-u_l)^2+|\nabla (u_k-u_l)|^2dx J(uk)+J(ul)2J(2uk+ul)=41Ω(ukul)2+∣∇(ukul)2dx + 1 4 σ ∫ Γ ( u k − u l ) 2 d s = 1 4 ∣ ∣ u k − u l ∣ ∣ H 1 ( Ω ) 2 + 1 4 σ ∫ Γ ( u k − u l ) 2 d s +\frac{1}{4}\sigma\int_{\Gamma}(u_k-u_l)^2ds=\frac{1}{4}||u_k-u_l||_{H^1(\Omega)}^{2}+\frac{1}{4}\sigma\int_{\Gamma}(u_k-u_l)^2ds +41σΓ(ukul)2ds=41∣∣ukulH1(Ω)2+41σΓ(ukul)2ds因为上面推导得 J ( u k ) + J ( u l ) − 2 J ( u k + u l 2 ) ≤ 1 k + 1 l J(u_k)+J(u_l)-2J(\frac{u_k+u_l}{2})\leq \frac{1}{k}+\frac{1}{l} J(uk)+J(ul)2J(2uk+ul)k1+l1所以也即 1 4 ∣ ∣ u k − u l ∣ ∣ H 1 ( Ω ) 2 + 1 4 σ ∫ Γ ( u k − u l ) 2 d s ≤ 1 k + 1 l \frac{1}{4}||u_k-u_l||_{H^1(\Omega)}^{2}+\frac{1}{4}\sigma\int_{\Gamma}(u_k-u_l)^2ds\leq \frac{1}{k}+\frac{1}{l} 41∣∣ukulH1(Ω)2+41σΓ(ukul)2dsk1+l1又因为 1 4 σ ∫ Γ ( u k − u l ) 2 d s \frac{1}{4}\sigma\int_{\Gamma}(u_k-u_l)^2ds 41σΓ(ukul)2ds是非负项,可得 0 ≤ ∣ ∣ u k − u l ∣ ∣ H 1 ( Ω ) 2 ≤ 4 ( 1 k + 1 l ) → 0 ( k , l → ∞ ) 0\leq ||u_k-u_l||_{H^1(\Omega)}^2\leq 4(\frac{1}{k}+\frac{1}{l})\rightarrow 0(k,l\rightarrow \infty) 0∣∣ukulH1(Ω)24(k1+l1)0(k,l)所以 { u k } \{u_k\} {uk} H 1 ( Ω ) H^1(\Omega) H1(Ω) 的基本列

H 1 ( Ω ) H^1(\Omega) H1(Ω) 的完备性知, ∃ u ∈ H 1 ( Ω ) ,   s . t .   ∣ ∣ u k − u ∣ ∣ H 1 ( Ω ) → 0 ( k → ∞ ) \exists u\in H^1(\Omega),\ s.t. \ ||u_k-u||_{H^1(\Omega)}\rightarrow 0(k\rightarrow \infty) uH1(Ω), s.t. ∣∣ukuH1(Ω)0(k)

从而 ∣ ∣ u k − u ∣ ∣ L 2 ( Ω ) → 0 ( k → ∞ ) ||u_k-u||_{L_2(\Omega)}\rightarrow 0(k\rightarrow \infty) ∣∣ukuL2(Ω)0(k) 这是因为根据 H 1 ( Ω ) H^1(\Omega) H1(Ω) L 2 ( Ω ) L_2(\Omega) L2(Ω) 各自范数定义的数学表达式, H 1 ( Ω ) H^1(\Omega) H1(Ω) 范数是两个平方项之和取 1 / 2 1/2 1/2 次幂,而 L 2 ( Ω ) L^2(\Omega) L2(Ω) 范数是一个平方项取 1 / 2 1/2 1/2 次幂且该项在 H 1 ( Ω ) H^1(\Omega) H1(Ω) 范数中也出现

从而 ∣ ∣ u k − u ∣ ∣ L 2 ( Ω ) → 0 ( k → ∞ ) ||u_k-u||_{L_2(\Omega)}\rightarrow 0(k\rightarrow \infty) ∣∣ukuL2(Ω)0(k)

对这个等式 m ≤ J ( u k ) = 1 2 ∣ ∣ u k ∣ ∣ H 1 ( Ω ) 2 + ∫ Γ ( 1 2 σ u k 2 − g u k ) d s < m + 1 k m\leq J(u_{k})=\frac{1}{2}||u_{k}||_{H_{1}(\Omega)}^{2}+\int_{\Gamma}(\frac{1}{2}\sigma u_{k}^2-gu_{k})ds<m+\frac{1}{k} mJ(uk)=21∣∣ukH1(Ω)2+Γ(21σuk2guk)ds<m+k1取极限 k → ∞ k\rightarrow\infty k

得到 J ( u ) = m = inf ⁡ v ∈ H 1 ( Ω ) J ( v ) J(u)=m=\inf_{v\in H^1(\Omega)}J(v) J(u)=m=infvH1(Ω)J(v)

(3) 证明变分问题解的唯一性

假设 u , w u,w u,w 都是变分问题的解,即 J ( u ) = J ( w ) = m = inf ⁡ v ∈ H 1 ( Ω ) J ( v ) J(u)=J(w)=m=\inf_{v\in H^1(\Omega)}J(v) J(u)=J(w)=m=infvH1(Ω)J(v)

那么按照 (2) 中凑出的表达式 0 ≤ ∣ ∣ ∇ ( u − w ) 2 ∣ ∣ L 2 ( Ω ) 2 = J ( u ) + J ( w ) − 2 J ( u + w 2 ) 0\leq ||\frac{\nabla(u-w)}{2}||_{L_{2}(\Omega)}^{2} = J(u)+J(w)-2J(\frac{u+w}{2}) 0∣∣2(uw)L2(Ω)2=J(u)+J(w)2J(2u+w) = m + m − 2 J ( u + w 2 ) =m+m-2J(\frac{u+w}{2}) =m+m2J(2u+w)这里是因为 u , w u,w u,w 都是变分问题的解,即 J ( u ) = J ( w ) = m J(u)=J(w)=m J(u)=J(w)=m

J ( u + w 2 ) ≥ m J(\frac{u+w}{2})\geq m J(2u+w)m,因为 m m m 是下确界,所以 − 2 J ( u + w 2 ) ≤ − 2 m -2J(\frac{u+w}{2})\leq -2m 2J(2u+w)2m

所以 0 ≤ ∣ ∣ ∇ ( u − w ) 2 ∣ ∣ L 2 ( Ω ) 2 = J ( u ) + J ( w ) − 2 J ( u + w 2 ) 0\leq ||\frac{\nabla(u-w)}{2}||_{L_{2}(\Omega)}^{2} = J(u)+J(w)-2J(\frac{u+w}{2}) 0∣∣2(uw)L2(Ω)2=J(u)+J(w)2J(2u+w) = m + m − 2 J ( u + w 2 ) ≤ m + m − 2 m = 0 =m+m-2J(\frac{u+w}{2})\leq m+m-2m=0 =m+m2J(2u+w)m+m2m=0

所以 u = w u=w u=w

然后导出与这个变分问题等价的边值问题

u u u 是该变分问题的解, v ∈ H 0 1 ( Ω ) v\in H_{0}^{1}(\Omega) vH01(Ω),令 j ( ϵ ) = J ( u + ϵ v ) = 1 2 ∫ Ω ( u + ϵ v ) 2 + ∣ ∇ ( u + ϵ v ) ∣ 2 d x + ∫ Γ 1 2 σ ( u + ϵ v ) 2 − g ( u + ϵ v ) d s j(\epsilon)=J(u+\epsilon v)=\frac{1}{2}\int_{\Omega}(u+\epsilon v)^2+|\nabla (u+\epsilon v)|^2dx+\int_{\Gamma}\frac{1}{2}\sigma (u+\epsilon v)^2-g(u+\epsilon v)ds j(ϵ)=J(u+ϵv)=21Ω(u+ϵv)2+∣∇(u+ϵv)2dx+Γ21σ(u+ϵv)2g(u+ϵv)ds ϵ \epsilon ϵ 求导

附注 ∣ ∇ ( u + ϵ v ) ∣ 2 |\nabla (u+\epsilon v)|^2 ∣∇(u+ϵv)2 ϵ \epsilon ϵ 求导的过程

∇ ( u + ϵ v ) = ∇ u + ∇ ϵ v = ∇ u + ϵ ∇ v \nabla (u+\epsilon v)=\nabla u+\nabla \epsilon v=\nabla u+ \epsilon \nabla v (u+ϵv)=u+ϵv=u+ϵv

∣ x ⃗ ∣ 2 = x ⃗ ⋅ x ⃗ |\vec{\mathbf{x}}|^2=\vec{\mathbf{x}}\cdot \vec{\mathbf{x}} x 2=x x ,向量模的平方等于自身和自身做点积
∣ ∇ ( u + ϵ v ) ∣ 2 = ( ∇ u + ϵ ∇ v ) ⋅ ( ∇ u + ϵ ∇ v ) |\nabla (u+\epsilon v)|^2 = (\nabla u + \epsilon \nabla v) \cdot (\nabla u + \epsilon \nabla v) ∣∇(u+ϵv)2=(u+ϵv)(u+ϵv)

展开后得到:

∣ ∇ ( u + ϵ v ) ∣ 2 = ∇ u ⋅ ∇ u + 2 ϵ ∇ u ⋅ ∇ v + ϵ 2 ∇ v ⋅ ∇ v |\nabla (u+\epsilon v)|^2 = \nabla u \cdot \nabla u + 2\epsilon \nabla u \cdot \nabla v + \epsilon^2 \nabla v \cdot \nabla v ∣∇(u+ϵv)2=uu+2ϵuv+ϵ2vv

ϵ \epsilon ϵ 求一阶导数,我们得到:

∂ ∂ ϵ ∣ ∇ ( u + ϵ v ) ∣ 2 = 2 ∇ u ⋅ ∇ v + 2 ϵ ∇ v ⋅ ∇ v \frac{\partial}{\partial \epsilon}|\nabla (u+\epsilon v)|^2 = 2 \nabla u \cdot \nabla v + 2\epsilon \nabla v \cdot \nabla v ϵ∣∇(u+ϵv)2=2∇uv+2ϵvv

ϵ = 0 \epsilon = 0 ϵ=0 时,我们有:

∂ ∂ ϵ ∣ ∇ ( u + ϵ v ) ∣ 2 ∣ ϵ = 0 = 2 ∇ u ⋅ ∇ v \left.\frac{\partial}{\partial \epsilon}|\nabla (u+\epsilon v)|^2\right|_{\epsilon=0} = 2 \nabla u \cdot \nabla v ϵ∣∇(u+ϵv)2 ϵ=0=2∇uv

ϵ \epsilon ϵ 求导得 j ′ ( ϵ ) = 1 2 ∫ Ω 2 ( u + ϵ v ) v + 2 ∇ u ⋅ ∇ v + 2 ϵ ∣ ∇ v ∣ 2 d x + ∫ Γ σ ( u + ϵ v ) v − g v d s j'(\epsilon)=\frac{1}{2}\int_{\Omega}2(u+\epsilon v)v+2 \nabla u \cdot \nabla v+2\epsilon |\nabla v|^2dx+\int_{\Gamma}\sigma (u+\epsilon v)v-gvds j(ϵ)=21Ω2(u+ϵv)v+2∇uv+2ϵ∣∇v2dx+Γσ(u+ϵv)vgvds那么 j ′ ( 0 ) = ∫ Ω u v + ∇ u ⋅ ∇ v d x + ∫ Γ ( σ u − g ) v d s j'(0)=\int_{\Omega}uv+\nabla u\cdot\nabla vdx+\int_{\Gamma}(\sigma u-g)vds j(0)=Ωuv+uvdx+Γ(σug)vds = ∫ Ω ( u − Δ u ) v d x + ∫ Γ ( σ u − g + ∂ u ∂ n ) v d s =\int_{\Omega}(u-\Delta u)vdx+\int_{\Gamma}(\sigma u-g+\frac{\partial u}{\partial n})vds =Ω(uΔu)vdx+Γ(σug+nu)vds

这一步的推导过程:
这个等式是通过应用格林公式和部分积分来推导的。格林公式将一个域内的散度项转化为边界上的通量项。我们可以按照以下步骤来推导这个等式:

首先,考虑函数 u u u v v v 在定义在域 Ω \Omega Ω 上,并且 Γ \Gamma Γ Ω \Omega Ω 的边界。

  1. 应用格林公式:

    根据格林第一公式, ∫ Ω ( ∇ u ⋅ ∇ v + v Δ u )   d x = ∫ Γ v ∂ u ∂ n   d s \int_{\Omega} (\nabla u \cdot \nabla v + v \Delta u) \, dx = \int_{\Gamma} v \frac{\partial u}{\partial n} \, ds Ω(uv+vΔu)dx=Γvnuds我们有:
    ∫ Ω ∇ u ⋅ ∇ v   d x = − ∫ Ω v Δ u   d x + ∫ Γ v ∂ u ∂ n   d s \int_{\Omega} \nabla u \cdot \nabla v \, dx = -\int_{\Omega} v \Delta u \, dx + \int_{\Gamma} v \frac{\partial u}{\partial n} \, ds Ωuvdx=ΩvΔudx+Γvnuds
    其中, Δ u \Delta u Δu u u u 的拉普拉斯算子, ∂ u ∂ n \frac{\partial u}{\partial n} nu u u u 沿边界法线方向的导数。

  2. 整合项:

    将上述公式的右侧加到等式的左侧,我们得到:
    ∫ Ω u v   d x + ∫ Ω ∇ u ⋅ ∇ v   d x + ∫ Γ ( σ u − g ) v   d s = ∫ Ω u v   d x − ∫ Ω v Δ u   d x + ∫ Γ v ∂ u ∂ n   d s + ∫ Γ ( σ u − g ) v   d s \int_{\Omega} uv \, dx + \int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Gamma} (\sigma u - g) v \, ds = \int_{\Omega} uv \, dx - \int_{\Omega} v \Delta u \, dx + \int_{\Gamma} v \frac{\partial u}{\partial n} \, ds + \int_{\Gamma} (\sigma u - g) v \, ds Ωuvdx+Ωuvdx+Γ(σug)vds=ΩuvdxΩvΔudx+Γvnuds+Γ(σug)vds

    这里,我们添加了 ∫ Ω u v   d x \int_{\Omega} uv \, dx Ωuvdx ∫ Γ ( σ u − g ) v   d s \int_{\Gamma} (\sigma u - g) v \, ds Γ(σug)vds 这两项,它们分别代表了在域 Ω \Omega Ω 和边界 Γ \Gamma Γ 上的积分。

  3. 简化:

    现在,我们可以将等式的右侧重新组织,得到:
    ∫ Ω u v + ∇ u ⋅ ∇ v   d x + ∫ Γ ( σ u − g ) v   d s = ∫ Ω ( u − Δ u ) v   d x + ∫ Γ ( σ u − g + ∂ u ∂ n ) v   d s \int_{\Omega} uv + \nabla u \cdot \nabla v \, dx + \int_{\Gamma} (\sigma u - g) v \, ds = \int_{\Omega} (u - \Delta u) v \, dx + \int_{\Gamma} (\sigma u - g + \frac{\partial u}{\partial n}) v \, ds Ωuv+uvdx+Γ(σug)vds=Ω(uΔu)vdx+Γ(σug+nu)vds
    这就是最终的等式。

这个推导利用了格林公式和部分积分的基本性质,将微分算子转化为边界上的积分,从而简化了问题的处理。

由于 u u u 是变分问题的解,根据必要性条件可知 j ′ ( 0 ) = 0 j'(0)=0 j(0)=0
j ′ ( 0 ) = ∫ Ω u v + ∇ u ⋅ ∇ v d x + ∫ Γ ( σ u − g ) v d s j'(0)=\int_{\Omega}uv+\nabla u\cdot\nabla vdx+\int_{\Gamma}(\sigma u-g)vds j(0)=Ωuv+uvdx+Γ(σug)vds = ∫ Ω ( u − Δ u ) v d x + ∫ Γ ( σ u − g + ∂ u ∂ n ) v d s = 0 =\int_{\Omega}(u-\Delta u)vdx+\int_{\Gamma}(\sigma u-g+\frac{\partial u}{\partial n})vds=0 =Ω(uΔu)vdx+Γ(σug+nu)vds=0

在这个表达式中, j ′ ( 0 ) j'(0) j(0) 是某个泛函 j j j 0 0 0 处的导数。根据给出的条件,对于所有在 Ω \Omega Ω 上光滑且在边界上消失的函数 v v v(即 v ∈ C 0 ∞ ( Ω ) v \in C_0^{\infty}(\Omega) vC0(Ω)),都有:

∫ Ω ( u − Δ u ) v   d x + ∫ Γ ( σ u − g + ∂ u ∂ n ) v   d s = 0 \int_{\Omega} (u - \Delta u) v \, dx + \int_{\Gamma} (\sigma u - g + \frac{\partial u}{\partial n}) v \, ds = 0 Ω(uΔu)vdx+Γ(σug+nu)vds=0

由于 v v v 在边界 Γ \Gamma Γ 上为零(即 v ∣ Γ = 0 v|_{\Gamma} = 0 vΓ=0),边界上的积分项消失,我们得到:

∫ Ω ( u − Δ u ) v   d x = 0 \int_{\Omega} (u - \Delta u) v \, dx = 0 Ω(uΔu)vdx=0

这个等式对于所有 v ∈ C 0 ∞ ( Ω ) v \in C_0^{\infty}(\Omega) vC0(Ω) 都成立。而任意给定的 v v v 不恒为 0 0 0,所以 u − Δ u = 0 in Ω u - \Delta u = 0 \quad \text{in} \quad \Omega uΔu=0inΩ根据变分原理,如果一个线性泛函对于一个充分大的函数空间中的所有函数都为零,那么被积函数必须在该空间的对偶空间中几乎处处为零。在这种情况下,因为 C 0 ∞ ( Ω ) C_0^{\infty}(\Omega) C0(Ω) 是一个在 Ω \Omega Ω 上的密集子空间,我们可以推断出:

u − Δ u = 0 in Ω u - \Delta u = 0 \quad \text{in} \quad \Omega uΔu=0inΩ

这意味着在 Ω \Omega Ω 上有 ∫ Ω ( u − Δ u ) v   d x = 0 \int_{\Omega} (u - \Delta u) v \, dx = 0 Ω(uΔu)vdx=0 成立。这个结果表明 u u u 是一个满足泊松方程 u − Δ u = 0 u - \Delta u = 0 uΔu=0 的函数。

从上一个推导步骤中,我们已经知道对于所有 v ∈ C 0 ∞ ( Ω ) v \in C_0^{\infty}(\Omega) vC0(Ω),有:

∫ Ω ( u − Δ u ) v   d x = 0 \int_{\Omega} (u - \Delta u) v \, dx = 0 Ω(uΔu)vdx=0

并且我们推断出 u − Δ u = 0 u - \Delta u = 0 uΔu=0 Ω \Omega Ω 内成立。现在,我们回到原始的等式:

∫ Ω ( u − Δ u ) v   d x + ∫ Γ ( σ u − g + ∂ u ∂ n ) v   d s = 0 \int_{\Omega} (u - \Delta u) v \, dx + \int_{\Gamma} (\sigma u - g + \frac{\partial u}{\partial n}) v \, ds = 0 Ω(uΔu)vdx+Γ(σug+nu)vds=0

由于我们已经知道第一个积分项为零,所以只剩下边界项:

∫ Γ ( σ u − g + ∂ u ∂ n ) v   d s = 0 \int_{\Gamma} (\sigma u - g + \frac{\partial u}{\partial n}) v \, ds = 0 Γ(σug+nu)vds=0

这个等式对所有 v ∈ C 0 ∞ ( Ω ) v \in C_0^{\infty}(\Omega) vC0(Ω) 成立,但是 C 0 ∞ ( Ω ) C_0^{\infty}(\Omega) C0(Ω) 中的函数在边界上是零。为了让这个等式对于边界上非零的函数也成立,我们需要考虑一个更广泛的函数空间,比如在边界上也光滑的函数空间。

然而,即使在这种情况下,为了让上述积分为零,被积函数(即边界项中的 σ u − g + ∂ u ∂ n \sigma u - g + \frac{\partial u}{\partial n} σug+nu)必须在边界 Γ \Gamma Γ 上几乎处处为零。因此,我们可以推导出:

σ u − g + ∂ u ∂ n = 0 on Γ \sigma u - g + \frac{\partial u}{\partial n} = 0 \quad \text{on} \quad \Gamma σug+nu=0onΓ

这表明 u u u 在边界 Γ \Gamma Γ 上满足这个边界条件。结合内部的泊松方程 u − Δ u = 0 u - \Delta u = 0 uΔu=0,我们得到了一个完整的边值问题。

所以变分问题的等价边值问题为:
{ u − Δ u = 0 in  Ω , σ u + ∂ u ∂ n ∣ Γ = g \begin{cases} u - \Delta u = 0 & \text{in } \Omega, \\ \sigma u + \frac{\partial u}{\partial n}|_{\Gamma} = g & \end{cases} {uΔu=0σu+nuΓ=gin Ω,

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值