Richardson–Lucy滤波的一点个人理解

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


一、泊松分布

       泊松分布和二项分布有密切的联系。下为泊松分布的来源:

       交通部门对一个十字路口一天内发生车祸的情况做研究,经过大量的统计和观察,该路口一天平均发生车祸的次数为 λ \lambda λ次。假设某天交通部门发现路口发生了k次车祸,问该事件出现的可能性多大?

在这里插入图片描述
       我们将一天分成n段等份,对于每一个区间,发生车祸的概率为 λ \lambda λ/n,那么从n段中选k段发生车祸,其余部分不发生车祸即可,其满足二项分布,概率计算为:

P ( X = k ) = C n k ( λ n ) k ( 1 − λ n ) n − k P(X=k)=C^k_n(\frac{\lambda}{n})^k(1-\frac{\lambda}{n})^{n-k} P(X=k)=Cnk(nλ)k(1nλ)nk

       当n趋于无穷时,该式可化简为:
在这里插入图片描述
       光学成像的过程可以看作泊松分布。对于单个像素来说,在曝光时间内,平均来说会有 λ \lambda λ个光子被这个像素采集到,那么这个像素实际采集到的光子数X即满足泊松分布。

二、高尔顿钉板

       红色小球撞到黑色钉子时以等概率的形式向两边分散开,已知钉板最下方的小球分布如下,问一共向小孔中扔了多少个小球?
在这里插入图片描述
       很简单啊,把下面所有球都加起来就行了。但是如果有两个小孔呢?是不是有点懵了。
在这里插入图片描述
       那干脆瞎蒙一个好了,左边孔扔了20个,右边孔扔了3个。乍一看也不是不可能,但是总感觉怪怪的,明明右边小球多一点啊,肯定是右边的孔扔的多。为什么会有这种想法呢?这里其实隐含了极大似然估计的思想,即由果推因,看看最可能是什么样的因造成了这种果。
       此外,我们还可以发现,正是高尔顿钉板的作用,使得红色小球出现的概率具有了一定的空间分布。

三、极大似然估计

       已知盒子里有黑球和白球共100个,有放回的从盒子里摸了10个球,统计结果发现有8个白球2个黑球,问盒子里白球最可能有多少个?

       设盒子里有白球x个为事件X,是,摸10个球有白球y个为事件Y,是。根据贝叶斯公式,当摸出来y个白球时,盒子里实际上有白球x个满足的概率为:

        P ( X ∣ Y ) = P ( Y ∣ X ) P ( X ) P ( Y ) = P ( Y ∣ X ) P ( X ) ∑ i = 0 100 P ( Y ∣ X = i ) P ( X = i ) P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)} = \frac{P(Y|X)P(X)}{\sum_{i=0}^{100}P(Y|X=i)P(X=i)} P(XY)=P

  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值