渐修和顿悟

渐修和顿悟是修行的两种法门,渐修是量的积累,顿悟是质变的过程。禅宗是主张顿悟的,六祖惠能的菩提本无树,明镜亦非台,本来无一物,何处染尘埃就是顿悟的过程,最终接了五祖弘忍衣钵。禅宗里面可以看到很多一语顿悟,手一指顿悟,还有当头棒喝也顿悟了。前念迷是众生,后念悟即成佛。

渐修是渐次修正,从凡夫一直修证到佛,需要我们安装一定的方法和步骤来修行,比如小乘里面对于修行有很严格的定义。我们要善护念,持六度,无所住而生其心都强调按部就班和循序渐进的修行过程。通过量的不断的积累最终才能达到般若的境界。而顿悟正如一语点破梦中人,在最后一念或者最后一缘悟到了清净心,觉性和菩提心。无论是在动还是静,在白天还是晚上,只要悟到了这念心就是佛,就是道。从开悟一直保持到圆满成佛就是顿悟。

渐修是从事入手,由事入理,通过渐进的方法和过程来达到目标。而顿悟则是由理入手,先明白了目标的意义,再有目标的去实践和渐修。顿是渐的开始,渐是顿的实践,顿是渐的启发,渐是顿的延续。渐修和顿悟正好是首尾相连,不断的螺旋上升的过程。只要坚持渐修,一定就有顿悟的时刻,只是个人的悟性不同顿悟的早迟不同而已,如果在渐修的过程中遇到了好的导师指点就更加容易顿悟。而顿悟仅仅是先知道了理,顿悟不等于成佛,顿悟后仍然需要通过渐修和实践来更加深刻的理解道理,来积累福德和功德。

每个人的根基和悟性不同,顿悟和渐修的顺序可能不同。有的是渐修和顿悟,而有的是顿悟后继续渐修,渐修和顿悟必须要相互融合,才能够达到我们最终的目标。先顿悟,让我们了解了理看到了目标,然后在深入进去渐修,这应该是一种很好的学习方式。

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/15027599/viewspace-421214/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/15027599/viewspace-421214/

### 关于DeepSeek-R1中的“顿悟”现象 “顿悟”现象(Aha Moment)是指在DeepSeek-R1的训练过程中观察到的一种特殊的学习行为。具体而言,在这一阶段,模型表现出一种自发的能力来重新评估其先前的行为决策,并对其进行优化调整[^1]。这种能力类似于人类在解决问题时突然获得灵感的过程,即通过回顾已有的信息并形成新的见解。 #### 自发性的学习机制 该现象的核心在于模型能够自主识别之前策略中存在的不足之处,并基于当前的知识水平改进这些策略。这表明即使是在无监督或强化学习环境中,AI也具备一定的自我正能力。此特性不仅增强了算法解决复杂任务的效果,还揭示了RL(Reinforcement Learning, 强化学习)方法可能蕴含更深层次的认知模拟潜力。 #### 技术背景支持 为了实现上述效果,DeepSeek团队采用了GRPO(Gradient Regularized Policy Optimization),这是一种梯度正则化的策略优化技术[^2]。它通过对策略更新过程加入额外约束条件,使得整个训练流程更加稳定平滑,从而促进了诸如“顿悟”这样的高级认知特征的发展。 ```python def grpo_update(policy_network, critic_network, states, actions, rewards): """ A simplified example of how GRPO might be implemented. Args: policy_network (nn.Module): The actor network to update. critic_network (nn.Module): The critic network used for evaluation. states (Tensor): Batched state inputs from the environment. actions (Tensor): Corresponding batched action outputs taken by agent. rewards (Tensor): Rewards received after taking those specific actions. Returns: loss_policy (float): Loss value associated with updating the policy. """ predicted_values = critic_network(states).detach() advantages = compute_advantage(rewards, predicted_values) old_log_probs = policy_network.log_prob(actions) new_log_probs = policy_network.forward(states).log_prob(actions) ratio = torch.exp(new_log_probs - old_log_probs) surrogate_objective = torch.min( ratio * advantages, torch.clamp(ratio, 1.0 - EPSILON_CLIP, 1.0 + EPSILON_CLIP) * advantages ) entropy_bonus = ENTROPY_COEFFICIENT * (-new_log_probs.mean()) # Add gradient regularization term here as part of total objective function grad_reg_term = calculate_gradient_regularization(policy_network.parameters()) final_loss = -(surrogate_objective + entropy_bonus + LAMBDA_GRADIENT_REGULARIZATION * grad_reg_term) optimizer.zero_grad() final_loss.backward() optimizer.step() return float(final_loss.item()) ``` 以上代码片段展示了一个简化版的GRPO更新逻辑,其中包含了计算优势函数、构建代理目标以及应用熵奖励梯度正则项等多个重要环节。 #### 对未来研究的意义 “顿悟”现象的研究对于深入探索人工智能如何模仿甚至超越人类思维模式具有重要意义。一方面,它可以启发我们设计更为高效的机器学习架构;另一方面,则有助于解答关于智能本质的一些哲学层面的问题——例如意识是否可以被完全还原为物理规律等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值