再识概率论

本文探讨概率论的基础概念,通过三个问题解析概率、条件概率和贝叶斯定理。问题1关注概率的定义,区分不同类型的概率表述;问题2讨论条件概率如何影响事件理解,举例骰子和天气情况;问题3深入解释贝叶斯公式,揭示先验概率和后验概率的关系。总结强调理解样本空间划分、条件概率的计算以及概率推理的重要性。
摘要由CSDN通过智能技术生成

概述

因为本人对于贝叶斯的神奇的渴望,以及对概率论体系的重视。发现自己对概率的定义仍然不清晰,这里提出一些小例子,进行分析,并回顾概率论最基础知识。大神请绕路!

问题1:
P(猪) 大家是不是觉得猪的概率这个说法很奇怪。
P(红球) 这个好像也是数学书里面经常出现的。
P(骰子为6) 大家是不是觉得骰子为6的概率貌似又比较正常,这个里面的区别到底在哪里呢?

问题2:
P(今天下雨)、P(今天下雨|昨天下雨),问题都是对于今天下雨的表述,那么我们考虑昨天下雨对今天下雨的影响时,我们是如何从概率论的角度理解的呢?

问题3:
一个比较简单的例子,例子仅为教学,如有冒犯请见谅。
P(非洲人|黑人) = P(非洲人)*P(黑人|非洲人)/P(黑人)
这里假设所有的黑人都是非洲人,但不是所有的非洲人都是黑人(好绕口,我简单画一下吧!)
人 人 人 人
非洲黑 非洲黑 非洲白 亚洲白

目标

上面我提出了3个问题,这里我把我想说的给提出来先。
针对第一个问题,我想从概率论的理论体系去分析,什么是概率,哪些东西是可以概率化的。
针对第二个问题,我想说明条件概率是什么,以及我们生活中的条件概率和课本里面条件概率。
针对第三个问题,我想说明贝叶斯是什么,以及如果感性的去理解贝叶斯这个东西,以及我们生活中我们都是怎么贝叶斯思考的(这里提出我们很大程度上用了似然,并没有去考虑真正的贝叶斯)。

问题1——什么是概率

这里先抄袭一段话“概率是用来描述对不确定性事件的信念程度,在很多时候用频率解释是合适的。但是很多时候,比如:一个学者有90%的把握断言《伊利亚特》、《奥德赛》是有同一作者创作的。这个里面概率仅仅是学者的主观信念。许多人由此认为主观信念是不值得研究的,至少从数学和科学的角度是这样。但在人们实际生活中,人们面对不确定性的时候,经常不得不作出抉择,这时候他们需要一个主观信念作为一个先决条件,因此发掘概率模型描述不确定性的艺术和提高概率模型的推理的有必要的。”
所谓的概率模型,它是一种对不确定现象的数学描述,定义如下:

概率模型的基本构成
·样本空间Ω,这是一个试验的所有可能结果的集合。
·概率律,概率律为试验结果的结合A
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值