目录
前言
随着深度学习模型不断增大,参数数量激增,对显卡性能提出了更高的要求。本文将深入分析显存利用、多显卡协作、CPU与GPU的协作,以及显存的组成,然后详细讨论数据并行、模型并行、Zero Redundancy Optimizer和Pipeline并行等优化方法,旨在实现简单、高效、廉价的分布式训练。
1 大模型训练优化的目标
迅速发展的深度学习领域,随着模型规模的不断增加,为了更快、更高效地完成训练,分布式训练成为一种不可忽视的策略,以简单、高效、廉价为目标,提升深度学习模型的训练效率。
1.1 简单性
分布式训练的简单性是提高工作效率的关键。通过合理的显存管理、协同计算方式的选择以及高效的参数更新策略,可以降低分布式训练的实施难度,使其更易于实现和维护。
1.2. 高效性
高效性是分布式训练的核心目标之一。通过数据并行、模型并行、Zero Redundancy Optimizer等优化方法,实现多张显卡之间的协同训练,提高训练速度,确保模型在有限时间内取得更好的性能。
1.3 廉价性
在追求高效性的同时,廉价性也是考虑的因素之一。合理利用多张低成本显卡、高效利用硬件资源,以及选择适当的分布式策略,可以在降低训练成本的同时提高训练效果。
为了实现简单、高效、廉价的分布式训练&