机器视觉中的视觉引导定位系统

本文探讨了机器视觉在工业应用中的引导角色,包括元件定位的重要性、挑战及解决方案。机器视觉系统通过精确的图像匹配技术,引导机器人进行元件定位、识别、检验和测量,提高生产效率和准确性。
摘要由CSDN通过智能技术生成

机器视觉行业已经发展了那么久了,机器视觉都有怎样的应用?你都了解吗?

机器视觉的应用主要分为四大类别,包括引导、识别、测量和检验(英文首字母缩写:GIGI),GIGI 表示 Guidance(引导)、Inspection(检验)、Gauging(测量)和 Identification(识别)。 接下来主要介绍机器视觉应用的引导部分。

机器视觉应用前的准备工作

从本质上讲,机器视觉系统就是在工业环境中引导机器人、测量物品、统计物品、读取条码、字母和数字,以及检测缺陷。在任何机器视觉应用中,无论是最简单的装配检验,还是复杂的3D机器人箱子拾取应用,通常第一步都是采用图案匹配技术定位相机视场内的兴趣物品或特征。兴趣物品的定位往往决定机器视觉应用的成败。所以机器视觉应用前的准备工作至关重要。

元件定位的挑战性

元件定位是机器视觉应用前非常关键的第一步。如果图案匹配软件工具无法精确地定位图像中的元件,那么,它将无法引导、识别、检验、计数或测量元件。虽然元件定位听上 去很简单,但在实际生产环境中,元件外观的差异可能导致这一步变得非常具有挑战性。

因照明或遮挡而出现的外观变化可能导致元件定位变得困难

虽然视觉系统经过培训,基于图案来识别元件,但即使是最严格控制的流程,也允许元件外观存在一定的变化。

元件呈现或姿势畸变影响也可能导致元件定位变得困难

要实现精确、可靠、可重复的结果,视觉系统的元件定位工具必须具备足够的智能,能够快速、精确地将培训图案与生产线上移动过来的实际物品进行比较(图案匹配)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值