【学习笔记】线性代数

1.1 1.1 1.1 线性映射 f : V ↦ V f:V↦V f:VV 被称为线性变换。在选定基底后,线性变换总可以表示为矩阵。下文中,我们用 A \cal A A表示线性变换, A α \cal A\alpha Aα表示 f ( α ) f(\alpha) f(α)

1.2 1.2 1.2 定义核 ker ⁡ ( A ) = { α ∣ A α = 0 } \ker(\cal A)=\{\alpha|\cal A \alpha=0\} ker(A)={αAα=0},像 Im ( A ) = { A α ∣ α ∈ V } \text{Im}(\cal A)=\{\cal A \alpha|\alpha\in V\} Im(A)={AααV},显然 ker ⁡ ( A ) \ker (\cal A) ker(A) Im ( A ) \text{Im}(\cal A) Im(A)都是 V V V的子空间。

1.3 1.3 1.3 定理: dim  V = dim ker ⁡ ( A ) + dim Im ( A ) \text{dim}\ V=\text{dim}\ker(\cal A)+\text{dim}\ \text{Im}(\cal A) dim V=dimker(A)+dim Im(A)。矩阵的 rank \text{rank} rank为极大线性无关向量组的大小,那么 rank ( A ) = dim Im ( A ) \text{rank}(\cal A)=\text{dim}\ \text{Im}(\cal A) rank(A)=dim Im(A) dim ker ⁡ ( A ) = n − rank ( A ) \text{dim}\ker(\cal A)=n-\text{rank}(\cal A) dimker(A)=nrank(A)

1.4 1.4 1.4 不变子空间: W W W V V V 的子空间,满足 ∀ α ∈ W , A α ∈ W \forall \alpha\in W,\cal A\alpha\in W αW,AαW,则 W W W V V V A \cal A A 下的不变子空间。显然 ker ⁡ ( A ) \ker(\cal A) ker(A) Im ( A ) \text{Im}(\cal A) Im(A) 都是不变子空间。

1.5 1.5 1.5 任何关于 A \cal A A的多项式 f ( A ) f(\cal A) f(A)都满足 ker ⁡ [ f ( A ) ] \ker[f(\cal A)] ker[f(A)] A \cal A A的一个不变子空间。道理很简单, ∀ α ∈ ker ⁡ [ f ( A ) ] \forall \alpha\in \ker[f(\cal A)] αker[f(A)],有 f ( A ) α = 0 ⇒ A f ( A ) α = 0 ⇒ f ( A ) A α = 0 f(\cal A)\alpha=0\Rightarrow\cal Af(\cal A)\alpha=0\Rightarrow f(\cal A)\cal A\alpha=0 f(A)α=0Af(A)α=0f(A)Aα=0 。为什么能交换呢,因为线性变换可以类比加法和乘法,而多项式同理。

1.6 1.6 1.6 如果我们能找到若干不变子空间 W 1 , W 2 , . . . , W k W_1,W_2,...,W_k W1,W2,...,Wk使得 W 1 ⊕ W 2 ⊕ . . . ⊕ W k = V W_1\oplus W_2\oplus...\oplus W_k=V W1W2...Wk=V,那么可以将 A \cal A A进行分块得到类似的对角矩阵,其他部分全是 0 0 0

1.7 1.7 1.7 定理:若 f ( x ) = f 1 ( x ) f 2 ( x ) f(x)=f_1(x)f_2(x) f(x)=f1(x)f2(x) gcd ⁡ [ f 1 ( x ) , f 2 ( x ) ] = 1 \gcd[f_1(x),f_2(x)]=1 gcd[f1(x),f2(x)]=1,则 ker ⁡ [ f ( A ) ] = ker ⁡ [ f 1 ( A ) ] ⊕ ker ⁡ [ f 2 ( A ) ] \ker[f(\cal A)]=\ker[f_1(\cal A)]\oplus \ker[f_2(\cal A)] ker[f(A)]=ker[f1(A)]ker[f2(A)]

类比因式分解,直观上不难理解。考虑形式化的证明:

1.7.1 1.7.1 1.7.1 先证 ∀ α ∈ ker ⁡ [ f 1 ( A ) ] , β ∈ ker ⁡ [ f 2 ( A ) ] \forall \alpha\in \ker[f_1(\cal A)],\beta\in \ker[f_2(\cal A)] αker[f1(A)],βker[f2(A)] α + β ∈ ker ⁡ [ f ( A ) ] \alpha+\beta\in \ker[f(\cal A)] α+βker[f(A)]

1.7.2 1.7.2 1.7.2 再证 ∀ α ∈ ker ⁡ [ f ( A ) ] , ∃ β ∈ ker ⁡ [ f 1 ( A ) ] , γ ∈ ker ⁡ [ f 2 ( A ) ] \forall \alpha \in \ker[f(\cal A)],\exist \beta\in \ker[f_1(\cal A)],\gamma\in \ker[f_2(\cal A)] αker[f(A)],βker[f1(A)],γker[f2(A)],使得 α = β + γ \alpha=\beta+\gamma α=β+γ

因为互质所以 S 1 ( A ) f 1 ( A ) + S 2 ( A ) f 2 ( A ) = 1 S_1(\cal A)f_1(\cal A)+S_2(\cal A)f_2(A)=1 S1(A)f1(A)+S2(A)f2(A)=1(类比裴蜀定理),那么取 β = S 2 ( A ) f 2 ( A ) α \beta=S_2(\cal A)f_2(\cal A)\alpha β=S2(A)f2(A)α γ = S 1 ( A ) f 1 ( A ) α \gamma=S_1(\cal A)f_1(A)\alpha γ=S1(A)f1(A)α,显然 β + γ = α \beta+\gamma=\alpha β+γ=α,并且 f 1 ( A ) β = f 1 ( A ) S 2 ( A ) f 2 ( A ) α = S 2 ( A ) f ( A ) α = 0 f_1(\cal A)\beta=f_1(\cal A)S_2(\cal A)f_2(A)\alpha=S_2(\cal A)f(\cal A)\alpha=0 f1(A)β=f1(A)S2(A)f2(A)α=S2(A)f(A)α=0,其余同理。

1.7.3 1.7.3 1.7.3 ker ⁡ [ f 1 ( A ) ] ∩ ker ⁡ [ f 2 ( A ) ] = 0 \ker[f_1(\cal A)]\cap\ker[f_2(\cal A)]=0 ker[f1(A)]ker[f2(A)]=0

1.8 1.8 1.8 零化多项式:使得 f ( A ) = 0 f(\cal A)=0 f(A)=0的多项式。如果我们找到了多项式 g ( x ) g(x) g(x),不妨设 g ( x ) = ∏ ( x − γ i ) t i g(x)=\prod (x-\gamma_i)^{t_i} g(x)=(xγi)ti,那么 ker ⁡ [ f ( A ) ] = ⊕ ker ⁡ [ ( A − γ i ) t i ] \ker[f(\cal A)]=\oplus \ker[(A-\gamma_i)^{t_i}] ker[f(A)]=ker[(Aγi)ti],而 f ( A ) = 0 f(\cal A)=0 f(A)=0,所以 ker ⁡ [ f ( A ) ] = V \ker[f(\cal A)]=V ker[f(A)]=V,这样我们找到了一个对原线性空间 V V V的一个剖分。

1.9 1.9 1.9 特征多项式: A α = λ α \cal A\alpha=\lambda \alpha Aα=λα α ∈ V \ { 0 } \alpha\in V \backslash \{0\} αV\{0} λ ∈ P \lambda\in P λP),则称 λ \lambda λ为特征值, α \alpha α为特征向量。

解这个方程很简单: ( A − λ ) α = 0 ⇒ α ∈ ker ⁡ ( A − λ ) (\cal A-\lambda)\alpha=0\Rightarrow \alpha\in \ker(\cal A-\lambda) (Aλ)α=0αker(Aλ) ,若 λ \lambda λ为特征值只需 det ⁡ ( A − λ ) = 0 \det(\cal A-\lambda)=0 det(Aλ)=0。显然 det ⁡ ( A − λ ) \det(\cal A-\lambda) det(Aλ)是关于 λ \lambda λ的多项式,记作 f ( λ ) f(\lambda) f(λ) A \cal A A的特征多项式。那么我们有, f ( A ) = 0 f(\cal A)=0 f(A)=0

有些有趣的性质。比如,由定义 f ( 0 ) = det ⁡ ( A ) f(0)=\det(\cal A) f(0)=det(A),而我们知道 f ( x ) = ∏ ( λ i − x ) t i f(x)=\prod(\lambda_i-x)^{t_i} f(x)=(λix)ti (因为 f ( x ) = 0 f(x)=0 f(x)=0的根都是特征值),所以 ∏ λ i = det ⁡ ( A ) \prod \lambda_i=\det(\cal A) λi=det(A)

2.0 2.0 2.0 相似变换:如果存在可逆矩阵 P P P使得 B = P − 1 A P B=P^{-1}AP B=P1AP,那么 B B B A A A就是相似的,这个变换叫做相似变换。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值