基于YOLOv8的PCB缺陷检测实现附完整代码

本文介绍了基于YOLOv8的PCB缺陷检测方法,使用了一个包含1386张图像的数据集,涵盖6种PCB缺陷类型。通过端到端的卷积神经网络,该模型能有效定位并分类缺陷,表现优于传统逐像素处理方式。提供数据集下载链接及训练验证流程。
摘要由CSDN通过智能技术生成

1 数据集

发布了一个合成的PCB数据集,包含1386张图像,其中包含6种缺陷,用于检测、分类和注册任务的使用。此外,我们提出了一种基于参考的方法来检查并训练了一个端到端的卷积神经网络来对这些缺陷进行分类。与传统方法需要逐像素处理不同,我们的方法首先定位缺陷,然后通过神经网络对其进行分类,显示出在我们的数据集上具有优越的性能。

 标注了6种最常见的PCB缺陷:'missing_hole', 'mouse_bite', 'open_circuit', 'short', 'spur', 'spurious_copper'

基于yolov5的PCB缺陷检测是一种利用深度学习技术进行自动化视觉检测的方法。该方法引入了CVPR 2023 BiFormer:Vision Transformer with Bi-Level Routing Attention,以提升检测精度。PCB数据集中包含了六种常见的缺陷类型,分别是"missing_hole"、"mouse_bite"、"open_circuit"、"short"、"spur"和"spurious_copper"。这些缺陷属于小目标缺陷检测范畴。PCB缺陷检测在电子产业中非常重要,因为产品的外观缺陷直接关系到企业的发展。利用深度学习技术,可以对PCB图像进行分析,提高自动化视觉检测的准确度和图像判读能力,并对缺陷进行分类。智能系统可以根据不同产品的不同缺陷标准进行灵活应对。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* [基于yolov5的PCB缺陷检测](https://blog.csdn.net/u012505617/article/details/130844232)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [基于yolov5的PCB缺陷检测,引入CVPR 2023 BiFormer:Vision Transformer with Bi-Level Routing Attention...](https://blog.csdn.net/m0_63774211/article/details/129715988)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值