机器学习入门(四):关于卷积运算量和参数数量的计算

本文介绍了卷积层的运算量计算公式:num(MAC)=I*J*M*N*K*L,其中I*J是卷积核大小,M*N是输出特征尺寸,K是输入通道数,L是输出通道数。以LeNet为例,说明了MAC的计算过程。同时,参数数量计算为para=I*J*K*L,即卷积核个数乘以卷积核尺寸。
摘要由CSDN通过智能技术生成

卷积层的运算量公式

num(MAC)=I*J*M*N*K*L

I J 为卷积核大小

M N为卷积之后输出特征的大小

K表示输入通道个数

L表示输出通道个数(这里的通道数可以理解为单样本特征图的个数)

以lenet中的参数为示例:

layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 20
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值