安装和使用 Ollama(实验环境windows)

下载安装

下载

https://ollama.com/download/windows

安装

Windows 安装

  • 如果直接双击 OllamaSetup.exe 安装,默认会安装到 C 盘,如果需要指定安装目录,需要通过命令行指定安装地址,如下:

    # 切换到安装目录
    C:\Users\lisiyu>D:
    # 执行安装
    D:\ollama>OllamaSetup.exe  /DIR="d:\ollama\"
    

设置模型存储路径

要更改 Ollama 存储下载模型的位置,而不是使用你的主目录,可以在你的用户账户中设置环境变量 OLLAMA_MODELS。

如下,先在安装 ollama 目录下创建 models 文件夹,然后在 windows 下设置环境变量:

在这里插入图片描述

快捷使用

  • 查看 ollama 版本
C:\Users\lisiyu>ollama --version
ollama version is 0.5.7
  • 查看 ollama 已下载模型列表
C:\Users\lisiyu>ollama list
NAME    ID    SIZE    
### Ollama 使用教程 Ollama 是一款用于管理运行大型语言模型的应用程序。通过简单的命令行操作即可完成模型的下载、配置以及调用。 #### 下载并安装 Ollama 访问官方网站获取最新版本的安装包[^1]: - 官方网址: [https://ollama.com/](https://ollama.com/) - GitHub 项目页面: [https://github.com/ollama/ollama](https://github.com/ollama/ollama) 按照官方文档中的指导完成软件安装过程。 #### 配置环境变量 (如果需要) 部分操作系统可能需要设置环境变量来确保 `ollama` 命令可以在任何位置执行。具体方法取决于所使用的平台,在 Linux 或 macOS 上通常可以通过编辑 `.bashrc` 文件实现;而在 Windows 中则需调整系统的 PATH 参数。 #### 获取可用的大规模预训练模型列表 为了查看当前支持哪些大规模预训练模型,可浏览在线库资源: - 模型仓库链接: [https://ollama.com/library](https://ollama.com/library) 这里列出了多种不同类型的自然语言处理任务适用的语言模型供用户挑选。 #### 运行选定的 LLM 模型实例 假设选择了名为 "llama2" 的模型作为实验对象,则只需打开终端窗口并键入如下指令启动该模型服务[^2]: ```shell ollama run llama2 ``` 这条语句会自动加载指定名称对应的模型文件,并准备就绪等待接收来自客户端应用程序的数据请求。 #### 发送 API 请求给已部署的服务端口 一旦上述步骤顺利完成之后,就可以利用 HTTP POST 方法向本地主机上的特定 URL 地址发送 JSON 格式的查询字符串了。例如: ```python import requests url = 'http://localhost:8080/v1/completions' data = { "prompt": "你好", "max_tokens": 50, } response = requests.post(url, json=data).json() print(response['choices'][0]['text']) ``` 这段 Python 脚本展示了如何构建一个简单的 RESTful API 调用来交互式地测试刚刚上线的语言理解能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值