评估运行在RK3588上的rknn模型(YOLOv8)

将YOLOv8及其改进的模型转换为rknn模型之后,可以通过官方给出的API评估模型的性能。

①用rknn.eval_perf()评估模型运行的耗时,可以精确到每一层。

from rknn.api import RKNN

if __name__ == '__main__':
    rknn = RKNN()

    # 使用Load_rknn接口导入rknn模型
    rknn.load_rknn(path= './path/to/yolov8_RK3588.rknn')

    # 使用init_runtime接口初始化运行时环境
    ret = rknn.init_runtime(target='rk3588',device_id='03d205b241a91ccc')
    
    if ret != 0:
        print('Init runtime environment failed!')
        exit(ret)
    print('done')

    # 使用eval_perf接口进行性能评估
    rknn.eval_perf()
    rknn.release()

②用rknn.eval_memory()评估模型运行的占用的内存。

from rknn.api import RKNN

if __name__ == '__main__':
    rknn = RKNN()

    # 使用Load_rknn接口导入rknn模型
    rknn.load_rknn(path= './path/to/yolov8_RK3588.rknn')

    # 使用init_runtime接口初始化运行时环境
    rknn.init_runtime(target='rk3588', device_id='03d205b241a91ccc', eval_mem=True)

    # 使用eval_memory接口进行内存评估
    rknn.eval_memory(
        is_print = True,	# is_print是否打印性能信息
    )
    rknn.release()

③自己写了一个脚本用于计算rknn模型运行在数据集的验证集上的map50,大致逻辑是在RK3588上把验证集的图片推理一遍,把推理的结果保存为文本文件,将文本文件复制到pc的yolov8文件夹下,与对应的labels文件计算每一张图片推理结果的AP,最后求平均值。要注意的是,map是对所有的目标求AP后求平均值,我的代码里是对每一张图片中的所有推理结果求出一个map,再将所有图片的结果加起来求平均值,因此如果每张图中的目标越少,计算得到的误差越小。(代码仅供参考)

# RK3588端推理代码
import os
import cv2
from rknn.api import RKNN
import numpy as np
 
 
RKNN_MODEL = "./path/to/yolov8_RK3588.rknn"
IMG_FOLDER = "./datasets/images/"
RESULT_PATH = './datasets/results/'

img_width = 640
img_height = 640
 
CLASSES = ['Wear', 'Pitting', 'Miss', 'One-third miss' ]
 
OBJ_THRESH = 0.25
NMS_THRESH = 0.45
 
MODEL_SIZE = (640, 640) 
 
color_palette = np.random.uniform(0, 255, size=(len(CLASSES), 3))
 
def sigmoid(x):
    return 1 / (1 + np.exp(-x))
 
def letter_box(im, new_shape, pad_color=(0,0,0), info_need=False):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)
 
    # Scale ratio
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
 
    # Compute padding
    ratio = r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
 
    dw /= 2  # divide padding into 2 sides
    dh /= 2
 
    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=pad_color)  # add border
    
    if info_need is True:
        return im, ratio, (dw, dh)
    else:
        return im
 
def filter_boxes(boxes, box_confidences, box_class_probs):
    """Filter boxes with object threshold.
    """
    box_confidences = box_confidences.reshape(-1)
    candidate, class_num = box_class_probs.shape
 
    class_max_score = np.max(box_class_probs, axis=-1)
    classes = np.argmax(box_class_probs, axis=-1)
 
    _class_pos = np.where(class_max_score* box_confidences >= OBJ_THRESH)
    scores = (class_max_score * box_confidences)[_class_pos]
 
    boxes = boxes[_class_pos]
    classes = classes[_class_pos]
 
    return boxes, classes, scores
 
def nms_boxes(boxes, scores):
    """Suppress non-maximal boxes.
    # Returns
        keep: ndarray, index of effective boxes.
    """
    x = boxes[:, 0]
    y = boxes[:, 1]
    w = boxes[:, 2] - boxes[:, 0]
    h = boxes[:, 3] - boxes[:, 1]
 
    areas = w * h
    order = scores.argsort()[::-1]
 
    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)
 
        xx1 = np.maximum(x[i], x[order[1:]])
        yy1 = np.maximum(y[i], y[order[1:]])
        xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
        yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
 
        w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
        h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
        inter = w1 * h1
 
        ovr = inter / (areas[i] + areas[order[1:]] - inter)
        inds = np.where(ovr <= NMS_THRESH)[0]
        order = order[inds + 1]
    keep = np.array(keep)
    return keep
 
def softmax(x, axis=None):
    x = x - x.max(axis=axis, keepdims=True)
    y = np.exp(x)
    return y / y.sum(axis=axis, keepdims=True)
 
def dfl(position):
    # Distribution Focal Loss (DFL)
    n,c,h,w = position.shape
    p_num = 4
    mc = c//p_num
    y = position.reshape(n,p_num,mc,h,w)
    y = softmax(y, 2)
    acc_metrix = np.array(range(mc),dtype=float).reshape(1,1,mc,1,1)
    y = (y*acc_metrix).sum(2)
    return y
 
 
def box_process(position):
    grid_h, grid_w = position.shape[2:4]
    col, row = np.meshgrid(np.arange(0, grid_w), np.arange(0, grid_h))
    col = col.reshape(1, 1, grid_h, grid_w)
    row = row.reshape(1, 1, grid_h, grid_w)
    grid = np.concatenate((col, row), axis=1)
    stride = np.array([MODEL_SIZE[1]//grid_h, MODEL_SIZE[0]//grid_w]).reshape(1,2,1,1)
 
    position = dfl(position)
    box_xy  = grid +0.5 -position[:,0:2,:,:]
    box_xy2 = grid +0.5 +position[:,2:4,:,:]
    xyxy = np.concatenate((box_xy*stride, box_xy2*stride), axis=1)
 
    return xyxy
 
def post_process(input_data):
    boxes, scores, classes_conf = [], [], []
    defualt_branch=3
    pair_per_branch = len(input_data)//defualt_branch
    # Python 忽略 score_sum 输出
    for i in range(defualt_branch):
        boxes.append(box_process(input_data[pair_per_branch*i]))
        classes_conf.append(input_data[pair_per_branch*i+1])
        scores.append(np.ones_like(input_data[pair_per_branch*i+1][:,:1,:,:], dtype=np.float32))
 
    def sp_flatten(_in):
        ch = _in.shape[1]
        _in = _in.transpose(0,2,3,1)
        return _in.reshape(-1, ch)
 
    boxes = [sp_flatten(_v) for _v in boxes]
    classes_conf = [sp_flatten(_v) for _v in classes_conf]
    scores = [sp_flatten(_v) for _v in scores]
 
    boxes = np.concatenate(boxes)
    classes_conf = np.concatenate(classes_conf)
    scores = np.concatenate(scores)
 
    # filter according to threshold
    boxes, classes, scores = filter_boxes(boxes, scores, classes_conf)
 
    # nms
    nboxes, nclasses, nscores = [], [], []
    for c in set(classes):
        inds = np.where(classes == c)
        b = boxes[inds]
        c = classes[inds]
        s = scores[inds]
        keep = nms_boxes(b, s)
 
        if len(keep) != 0:
            nboxes.append(b[keep])
            nclasses.append(c[keep])
            nscores.append(s[keep])
 
    if not nclasses and not nscores:
        return None, None, None
 
    boxes = np.concatenate(nboxes)
    classes = np.concatenate(nclasses)
    scores = np.concatenate(nscores)
 
    return boxes, classes, scores
 
def draw_detections(img, left, top, right, bottom, score, class_id):
    """
    Draws bounding boxes and labels on the input image based on the detected objects.
    Args:
        img: The input image to draw detections on.
        box: Detected bounding box.
        score: Corresponding detection score.
        class_id: Class ID for the detected object.
    Returns:
        None
    """
 
    # Retrieve the color for the class ID
    color = color_palette[class_id]
 
    # Draw the bounding box on the image
    cv2.rectangle(img, (int(left), int(top)), (int(right), int(bottom)), color, 2)
 
    # Create the label text with class name and score
    label = f"{CLASSES[class_id]}: {score:.2f}"
 
    # Calculate the dimensions of the label text
    (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
 
    # Calculate the position of the label text
    label_x = left
    label_y = top - 10 if top - 10 > label_height else top + 10
 
    # Draw a filled rectangle as the background for the label text
    cv2.rectangle(img, (label_x, label_y - label_height), (label_x + label_width, label_y + label_height), color,
                  cv2.FILLED)
 
    # Draw the label text on the image
    cv2.putText(img, label, (label_x, label_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
 
 
def draw(image, boxes, scores, classes):
    img_h, img_w = image.shape[:2]
    # Calculate scaling factors for bounding box coordinates
    x_factor = img_w / MODEL_SIZE[0]
    y_factor = img_h / MODEL_SIZE[1]
 
    for box, score, cl in zip(boxes, scores, classes):
        
        x1, y1, x2, y2 = [int(_b) for _b in box]
 
        left = int(x1* x_factor)
        top = int(y1 * y_factor) - 10
        right = int(x2 * x_factor)
        bottom = int(y2 * y_factor) + 10
 
        print('class: {}, score: {}'.format(CLASSES[cl], score))
        print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(left, top, right, bottom))
 
        # Retrieve the color for the class ID
        
        draw_detections(image, left, top, right, bottom, score, cl)
 
        # cv2.rectangle(image, (left, top), (right, bottom), color, 2)
        # cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
        #             (left, top - 6),
        #             cv2.FONT_HERSHEY_SIMPLEX,
        #             0.6, (0, 0, 255), 2)
 

def convert_to_relative_coordinates(box, img_width, img_height):
    xmin, ymin, xmax, ymax = box
    cx = (xmin + xmax) / 2 / img_width
    cy = (ymin + ymax) / 2 / img_height
    width = (xmax - xmin) / img_width
    height = (ymax - ymin) / img_height
    return cx, cy, width, height

def save_predictions_to_txt(predictions, file_path, img_width, img_height):
    with open(file_path, 'w') as f:
        for pred in predictions:
            boxes, classes, scores = pred[0], pred[1], pred[2]
            for box, cls, score in zip(boxes, classes, scores):
                cx, cy, width, height = convert_to_relative_coordinates(box, img_width, img_height)
                f.write(f"{cls} {cx} {cy} {width} {height} {score}\n")

 
if __name__ == '__main__':
 
    # 创建RKNN对象
    rknn = RKNN()
    
    #加载RKNN模型
    print('--> Load RKNN model')
    ret = rknn.load_rknn(RKNN_MODEL)
    if ret != 0:
        print('Load RKNN model failed')
        exit(ret)
    print('done')
 
     # 初始化 runtime 环境
    print('--> Init runtime environment')
    # run on RK356x/RK3588 with Debian OS, do not need specify target.
    ret = rknn.init_runtime(target='rk3588', device_id='03d205b241a91ccc')
    # 如果使用电脑进行模拟测试
    # ret = rknn.init_runtime()
 
    if ret != 0:
        print('Init runtime environment failed!')
        exit(ret)
    print('done')
 
    # 数据处理
    img_list = os.listdir(IMG_FOLDER)
    for i in range(len(img_list)):
        predictions = []
        img_name = img_list[i]
        img_path = os.path.join(IMG_FOLDER, img_name)
        if not os.path.exists(img_path):
            print("{} is not found", img_name)
            continue
        img_src = cv2.imread(img_path)
        if img_src is None:
            print("文件不存在\n")
 
        # Due to rga init with (0,0,0), we using pad_color (0,0,0) instead of (114, 114, 114)
        pad_color = (0,0,0)
        img = letter_box(im= img_src.copy(), new_shape=(MODEL_SIZE[1], MODEL_SIZE[0]), pad_color=(0,0,0))
        #img = cv2.resize(img_src, (640, 512), interpolation=cv2.INTER_LINEAR) # direct resize
        input = np.expand_dims(img, axis=0)
 
        outputs = rknn.inference([input])
        
        boxes, classes, scores = post_process(outputs)

        result = [boxes, classes, scores]

        predictions.append(result)
 
        img_p = img_src.copy()
 
        if boxes is not None:
            
            draw(img_p, boxes, scores, classes)
 
        # 保存结果
        if not os.path.exists(RESULT_PATH):
            os.mkdir(RESULT_PATH)
 
        result_path = os.path.join(RESULT_PATH, img_name)
        cv2.imwrite(result_path, img_p)
        print('Detection result save to {}'.format(result_path))
        
        gt_path = img_path.replace('images', 'labels').replace('.jpg', '.txt')
        save_predictions_to_txt(predictions, gt_path, img_width, img_height)
        
        pass
        
    rknn.release()
# PC端计算代码
import numpy as np
import os

def read_txt_lab(file_path):
    with open(file_path, 'r') as f:
        lines = f.readlines()
    data = []
    for line in lines:
        parts = line.strip().split()
        cls = int(parts[0])
        cx = float(parts[1])
        cy = float(parts[2])
        width = float(parts[3])
        height = float(parts[4])
        data.append([cls, cx, cy, width, height])
    return data

def read_txt_pred(file_path):
    with open(file_path, 'r') as f:
        lines = f.readlines()
    data = []
    for line in lines:
        parts = line.strip().split()
        cls = int(parts[0])
        cx = float(parts[1])
        cy = float(parts[2])
        width = float(parts[3])
        height = float(parts[4])
        score = float(parts[5])
        data.append([cls, cx, cy, width, height, score])
    return data


def convert_to_absolute_coordinates(box, img_width, img_height):
    cls, cx, cy, width, height = box
    xmin = (cx - width / 2) * img_width
    ymin = (cy - height / 2) * img_height
    xmax = (cx + width / 2) * img_width
    ymax = (cy + height / 2) * img_height
    return [xmin, ymin, xmax, ymax, cls]

def convert_to_absolute_coordinates_pred(box, img_width, img_height):
    cls, cx, cy, width, height, _ = box
    xmin = (cx - width / 2) * img_width
    ymin = (cy - height / 2) * img_height
    xmax = (cx + width / 2) * img_width
    ymax = (cy + height / 2) * img_height
    return [xmin, ymin, xmax, ymax, cls]


def calculate_iou(box1, box2):
    x1, y1, x2, y2 = box1[:4]
    x1g, y1g, x2g, y2g = box2[:4]

    xi1 = max(x1, x1g)
    yi1 = max(y1, y1g)
    xi2 = min(x2, x2g)
    yi2 = min(y2, y2g)

    inter_area = max(0, xi2 - xi1) * max(0, yi2 - yi1)
    box1_area = (x2 - x1) * (y2 - y1)
    box2_area = (x2g - x1g) * (y2g - y1g)

    union_area = box1_area + box2_area - inter_area

    iou = inter_area / union_area
    return iou


def calculate_tp_fp(pred_boxes, pred_classes, pred_scores, gt_boxes, gt_classes, iou_threshold=0.5):
    tp = np.zeros(pred_boxes.shape[0])
    fp = np.zeros(pred_boxes.shape[0])
    detected = []

    for i, pred_box in enumerate(pred_boxes):
        ious = []
        for j, gt_box in enumerate(gt_boxes):
            if pred_classes[i] == gt_classes[j] and j not in detected:
                iou = calculate_iou(pred_box, gt_box)
                ious.append((iou, j))

        if ious:
            iou, j = max(ious, key=lambda x: x[0])
            if iou >= iou_threshold:
                tp[i] = 1
                detected.append(j)
            else:
                fp[i] = 1
        else:
            fp[i] = 1

    return tp, fp


def ap_per_class(tp, conf, pred_cls, target_cls):
    """ Compute the average precision, given the recall and precision curves.
        Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
    """
    # Sort by objectness
    i = np.argsort(-conf)
    tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]

    # Find unique classes
    unique_classes = np.unique(target_cls)
    ap, p, r = [], [], []

    # Compute AP per class
    for c in unique_classes:
        i = pred_cls == c
        n_gt = (target_cls == c).sum()  # Number of ground truth objects
        n_p = i.sum()  # Number of predicted objects

        if n_p == 0 and n_gt == 0:
            continue
        elif n_p == 0 or n_gt == 0:
            ap.append(0)
            p.append(0)
            r.append(0)
        else:
            # Accumulate FPs and TPs
            fpc = np.cumsum(1 - tp[i])
            tpc = np.cumsum(tp[i])

            # Recall
            recall_curve = tpc / (n_gt + 1e-16)
            r.append(recall_curve[-1])

            # Precision
            precision_curve = tpc / (tpc + fpc)
            p.append(precision_curve[-1])

            # AP from recall-precision curve
            ap.append(compute_ap(recall_curve, precision_curve))

    # Compute F1 score (harmonic mean of precision and recall)
    p, r, ap = np.array(p), np.array(r), np.array(ap)
    f1 = 2 * p * r / (p + r + 1e-16)

    return p, r, ap, f1, unique_classes.astype(int)


def compute_ap(recall, precision):
    """ Compute the average precision, given the recall and precision curves.
        Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
    """
    # Append sentinel values to beginning and end
    mrec = np.concatenate(([0.], recall, [1.]))
    mpre = np.concatenate(([0.], precision, [0.]))

    # Compute the precision envelope
    for i in range(mpre.size - 1, 0, -1):
        mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])

    # Integrate area under curve
    i = np.where(mrec[1:] != mrec[:-1])[0]
    ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
    return ap


# 读取预测结果和标签
predictions_file_path = './datasets/predict'
# labels_file_path = './datasets/labels/00188.txt'
total_map = 0.0

for root, dirs, files in os.walk(predictions_file_path):
    for file in files:
        print(file)
        file_path = os.path.join(root, file)
        labels_file_path = file_path.replace('predict', 'labels')

        predictions = read_txt_pred(file_path)
        labels = read_txt_lab(labels_file_path)

        # 图像尺寸
        img_width = 1080
        img_height = 1920

        # 转换为绝对坐标
        pred_boxes = np.array([convert_to_absolute_coordinates_pred(pred, img_width, img_height) for pred in predictions])
        gt_boxes = np.array([convert_to_absolute_coordinates(gt, img_width, img_height) for gt in labels])

        pred_classes = np.array([pred[0] for pred in predictions])
        gt_classes = np.array([gt[0] for gt in labels])
        pred_scores = np.array([pred[5] for pred in predictions])  # 示例置信度分数

        # 计算TP和FP
        tp, fp = calculate_tp_fp(pred_boxes, pred_classes, pred_scores, gt_boxes[:, :4], gt_classes)

        # 计算AP
        precision, recall, ap, f1, ap_class = ap_per_class(tp, pred_scores, pred_classes, gt_classes)

        # 计算mAP@0.5
        mAP50 = np.mean(ap)
        total_map += mAP50
        print("mAP@0.5:", mAP50)

print("total_map@0.5:", total_map)
# mAP=total_map / IMG_NUM

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值