yoolov8的项目中集成了obb旋转目标检测,但是从数据标注到在项目里跑起来有一段比较曲折的路。
用roLabelImg标注旋转目标框可以参考文章旋转标注工具roLabelImg使用教程-CSDN博客,得到的label文件为xml格式,内容样式如下。
<annotation verified="no">
<folder>images</folder>
<filename>000000000006</filename>
<path>C:\Ayjc\about_graduate\datasets\DC\DC_obb\images\000000000006.jpg</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>1440</width>
<height>1920</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<type>robndbox</type>
<name>dan</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<robndbox>
<cx>462.0606</cx>
<cy>1000.1061</cy>
<w>238.0</w>
<h>751.0</h>
<angle>2.694585</angle>
</robndbox>
</object>
</annotation>
label文件格式转换的逻辑是:先将格式转换为obb检测通用数据集DOTA数据集(类似COCO数据集在目标检测的地位)的xml格式,再转换为txt形式的DOTA数据集格式再通过yolov8中自带的转换脚本,将DOTA数据集格式转换为yolov8的txt格式。
1、利用这个脚本可以将数据集转换为DOTA数据集的xml格式和txt格式,并分别存入相应文件夹。
# 功能描述 :把rolabelimg标注的xml文件转换成dota能识别的xml文件,
# 再转换成dota格式的txt文件
# 把旋转框 cx,cy,w,h,angle,或者矩形框cx,cy,w,h,转换成四点坐标x1,y1,x2,y2,x3,y3,x4,y4
import os
import xml.etree.ElementTree as ET
import math
cls_list = ['标注的类别'] # 修改为自己的标签
def edit_xml(xml_file, dotaxml_file):
"""
修改xml文件
:param xml_file:xml文件的路径
:return:
"""
# dxml_file = open(xml_file,encoding='gbk')
# tree = ET.parse(dxml_file).getroot()
tree = ET.parse(xml_file)
objs = tree.findall('object')
for ix, obj in enumerate(objs):
x0 = ET.Element("x0") # 创建节点
y0 = ET.Element("y0")
x1 = ET.Element("x1")
y1 = ET.Element("y1")
x2 = ET.Element("x2")
y2 = ET.Element("y2")
x3 = ET.Element("x3")
y3 = ET.Element("y3")
# obj_type = obj.find('bndbox')
# type = obj_type.text
# print(xml_file)
if (obj.find('robndbox') == None):
obj_bnd = obj.find('bndbox')
obj_xmin = obj_bnd.find('xmin')
obj_ymin = obj_bnd.find('ymin')
obj_xmax = obj_bnd.find('xmax')
obj_ymax = obj_bnd.find('ymax')
# 以防有负值坐标
xmin = max(float(obj_xmin.text), 0)
ymin = max(float(obj_ymin.text), 0)
xmax = max(float(obj_xmax.text), 0)
ymax = max(float(obj_ymax.text), 0)
obj_bnd.remove(obj_xmin) # 删除节点
obj_bnd.remove(obj_ymin)
obj_bnd.remove(obj_xmax)
obj_bnd.remove(obj_ymax)
x0.text = str(xmin)
y0.text = str(ymax)
x1.text = str(xmax)
y1.text = str(ymax)
x2.text = str(xmax)
y2.text = str(ymin)
x3.text = str(xmin)
y3.text = str(ymin)
else:
obj_bnd = obj.find('robndbox')
obj_bnd.tag = 'bndbox' # 修改节点名
obj_cx = obj_bnd.find('cx')
obj_cy = obj_bnd.find('cy')
obj_w = obj_bnd.find('w')
obj_h = obj_bnd.find('h')
obj_angle = obj_bnd.find('angle')
cx = float(obj_cx.text)
cy = float(obj_cy.text)
w = float(obj_w.text)
h = float(obj_h.text)
angle = float(obj_angle.text)
obj_bnd.remove(obj_cx) # 删除节点
obj_bnd.remove(obj_cy)
obj_bnd.remove(obj_w)
obj_bnd.remove(obj_h)
obj_bnd.remove(obj_angle)
x0.text, y0.text = rotatePoint(cx, cy, cx - w / 2, cy - h / 2, -angle)
x1.text, y1.text = rotatePoint(cx, cy, cx + w / 2, cy - h / 2, -angle)
x2.text, y2.text = rotatePoint(cx, cy, cx + w / 2, cy + h / 2, -angle)
x3.text, y3.text = rotatePoint(cx, cy, cx - w / 2, cy + h / 2, -angle)
# obj.remove(obj_type) # 删除节点
obj_bnd.append(x0) # 新增节点
obj_bnd.append(y0)
obj_bnd.append(x1)
obj_bnd.append(y1)
obj_bnd.append(x2)
obj_bnd.append(y2)
obj_bnd.append(x3)
obj_bnd.append(y3)
tree.write(dotaxml_file, method='xml', encoding='utf-8') # 更新xml文件
# 转换成四点坐标
def rotatePoint(xc, yc, xp, yp, theta):
xoff = xp - xc;
yoff = yp - yc;
cosTheta = math.cos(theta)
sinTheta = math.sin(theta)
pResx = cosTheta * xoff + sinTheta * yoff
pResy = - sinTheta * xoff + cosTheta * yoff
return str(int(xc + pResx)), str(int(yc + pResy))
def totxt(xml_path, out_path):
# 想要生成的txt文件保存的路径,这里可以自己修改
files = os.listdir(xml_path)
i = 0
for file in files:
tree = ET.parse(xml_path + os.sep + file)
root = tree.getroot()
name = file.split('.')[0]
output = out_path + '\\' + name + '.txt'
file = open(output, 'w')
i = i + 1
objs = tree.findall('object')
for obj in objs:
cls = obj.find('name').text
box = obj.find('bndbox')
x0 = int(float(box.find('x0').text))
y0 = int(float(box.find('y0').text))
x1 = int(float(box.find('x1').text))
y1 = int(float(box.find('y1').text))
x2 = int(float(box.find('x2').text))
y2 = int(float(box.find('y2').text))
x3 = int(float(box.find('x3').text))
y3 = int(float(box.find('y3').text))
if x0 < 0:
x0 = 0
if x1 < 0:
x1 = 0
if x2 < 0:
x2 = 0
if x3 < 0:
x3 = 0
if y0 < 0:
y0 = 0
if y1 < 0:
y1 = 0
if y2 < 0:
y2 = 0
if y3 < 0:
y3 = 0
for cls_index, cls_name in enumerate(cls_list):
if cls == cls_name:
file.write("{} {} {} {} {} {} {} {} {} {}\n".format(x0, y0, x1, y1, x2, y2, x3, y3, cls, cls_index))
file.close()
# print(output)
print(i)
if __name__ == '__main__':
# -----**** 第一步:把xml文件统一转换成旋转框的xml文件 ****-----
roxml_path = r'C:/Ayjc/about_graduate/datasets/DC/DC_obb/labels_xml' # 存放roLabelImg标注的原文件的文件夹
dotaxml_path = r'C:/Ayjc/about_graduate/datasets/DC/DC_obb/labels_xml' # 存放转换后DOTA数据集xml格式文件的文件夹
out_path = r'C:/Ayjc/about_graduate/datasets/DC/DC_obb/dotatxt' # 存放转换后DOTA数据集txt格式文件的文件夹
filelist = os.listdir(roxml_path)
for file in filelist:
edit_xml(os.path.join(roxml_path, file), os.path.join(dotaxml_path, file))
# -----**** 第二步:把旋转框xml文件转换成txt格式 ****-----
totxt(dotaxml_path, out_path)
得到的DOTA数据集xml格式的文件内容形式如下。
<annotation verified="no">
<folder>DC_obb</folder>
<filename>000000000006</filename>
<path>C:\Ayjc\about_graduate\datasets\DC\DC_obb\000000000006.jpg</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>1440</width>
<height>1920</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<type>robndbox</type>
<name>dancang</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<x0>88</x0><y0>595</y0><x1>1171</x1><y1>739</y1><x2>1143</x2><y2>951</y2><x3>60</x3><y3>807</y3></bndbox>
</object>
</annotation>
得到的DOTA数据集txt格式的文件内容形式如下。
88 595 1171 739 1143 951 60 807 dancang 9
2、调用yolov8自带的数据集格式转换脚本(路径为项目文件夹下ultralytics/data/converter.py),在调用前需要对脚本做一些改动。
①在350行左右将数据集的类别改为自己的。
# Class names to indices mapping
'''
class_mapping = {
"plane": 0,
"ship": 1,
"storage-tank": 2,
"baseball-diamond": 3,
"tennis-court": 4,
"basketball-court": 5,
"ground-track-field": 6,
"harbor": 7,
"bridge": 8,
"large-vehicle": 9,
"small-vehicle": 10,
"helicopter": 11,
"roundabout": 12,
"soccer-ball-field": 13,
"swimming-pool": 14,
"container-crane": 15,
"airport": 16,
"helipad": 17,
}
'''
class_mapping = {
"自己的类别": 对应的序号
}
②在410行左右,将图片格式改为自己数据集中的图片格式(我的是jpg格式)。
for image_path in TQDM(image_paths, desc=f"Processing {phase} images"):
if image_path.suffix != ".jpg":
continue
image_name_without_ext = image_path.stem
img = cv2.imread(str(image_path))
h, w = img.shape[:2]
convert_label(image_name_without_ext, w, h, orig_label_dir, save_dir)
3、在存放DOTA txt格式标签文件的文件夹中,将转换好的标签文件分为train_original和val_original两个文件夹,放入对应的标签。运行一下代码调用脚本。需要注意把当前环境的ultralytics包卸载,否则会调用到site-packages中的脚本导致改动失效,并且这个脚本需要放在ultralytics的同级目录下。
import sys
sys.path.append('/ultralytics-main/ultralytics')
from ultralytics.data.converter import convert_dota_to_yolo_obb
convert_dota_to_yolo_obb('path/to/dotatxt') # DOTA txt格式标签文件存放路径
运行之后,在DOTA txt格式标签文件的文件夹中会产生train和val两个文件夹,里面存放了转换好的yolov8格式标签文件,形式如下。
9 0.0611111 0.309896 0.813194 0.384896 0.79375 0.495312 0.0416667 0.420312
至此,数据集就可以放入yolov8-obb训练了,新建yolov8-obb_1.yaml。
# dataset path
path: path/to/dataset
train: ./dataset/images/train
val: ./dataset/images/val
test: ./dataset/images/test
# number of classes
nc: x
# class names
names: ['自己的类别']
运行train.py开始训练。
import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO
if __name__ == '__main__':
model = YOLO('ultralytics-main/ultralytics/cfg/models/v8/yolov8-obb.yaml')
# model.load('yolov8n.pt') # loading pretrain weights
model.train(data='/ultralytics-main/dataset/data-OBB-DC.yaml',
cache=False,
imgsz=640,
epochs=400,
batch=1,
close_mosaic=10,
workers=1,
device='0',
optimizer='SGD', # using SGD
# resume='', # last.pt path
# amp=False, # close amp
# fraction=0.2,
project='runs/train',
name='OBB',
)
成功。