AI 的测试:模型评估的常用指标

本文介绍了AI模型评估的关键指标,包括精度、召回率和F1分数,以及在NLP中用于摘要评估的ROUGE和翻译评估的BLEU SCORE。理解这些指标有助于更准确地评估和优化模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模型评估的指标

模型是在大量的数据集上训练而来的,无论一个模型是从零训练的还是基于某一个模型,通过微调方法得到的,靠人工评价模型的效果都是异常困难的。那么要想客观的、自动化的评价一个LLM模型,就需要能够选择正确评估模型效果的指标或者基准测试,来客观和自动化的完成评价,从而正确的反馈模型的效果。

在测试AI系统中的模型训练和评估阶段,需要使用准备好的数据集对AI模型进行训练和评估。在训练过程中,应该对模型进行监控和调整,以确保模型的准确性和效果。在评估过程中,需要使用测试数据集对模型进行测试,以验证模型的准确性和效果。在评估过程中,需要使用各种度量方法来评估模型的准确性和效果,例如精度、召回率、F1分数等等。

精度是指模型正确预测的样本数占总样本数的比例,即:

其中,Precision是指精度,True Positive指分类器正确判断为正例的样本数,False Positive指分类器错误判断为正例的样本数。精度越高,说明模型的分类效果越好。

召回率是指模型正确预测的正样本数占所有正样本数的比例,即:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CrissChan

开心就好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值