softmax回归梯度计算及其与logistic回归关系

本文详细探讨了softmax回归中损失函数的梯度计算,并将其与logistic回归的梯度形式进行了对比,揭示了两者在梯度和求导形式上的相似性,表明softmax是logistic在多类别问题上的拓展。
摘要由CSDN通过智能技术生成

在softmax回归中,假设我们的训练集由m个已标记样本组成:\[\{ ({x^{(1)}},{y^{(1)}}),...,({x^{(m)}},{y^{(m)}})\} \]且激活函数为softmax函数:\[p({y^{(i)}} = j|{x^{(i)}};\theta ) = \frac{ { {e^{ - {\theta _j}^T{x^{(i)}}}}}}{ {\sum\limits_{l = 1}^k { {e^{ - {\theta _l}^T{x^{(i)}}}}} }}\]损失函数为:\[J(\theta ) =  - \frac{1}{m}\sum\limits_{i,j = 1}^m {[I({y^{(i)}} = j)logp({y^{(i)}} = j|{x^{(i)}};\theta )]} \]其中,\[{I({y^{(i)}} = j)}\]为示性函数

 这里,损失函数对参数的梯度的第t个分量应该分为两种情况考虑(因为待求的分量t可能与softmax函数分子中的(第j个)参数一致,也可能不一致):

t = j 时:\[\begin{gathered}
  {\nabla _{ {\theta _t}}}J(\theta ) &= & - \frac{1}{m}\sum\limits_{i = 1}^m {[\frac{1}{ {p({y^{(i)}} = j|{x^{(i)}};\theta )}} \cdot } p({y^{(i)}} = j|{x^{(i)}};\theta ) \cdot (1 - p({y^{(i)}} = j|{x^{(i)}};\t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值