LR(logistic regression)逻辑回归Loss和梯度的推导

逻辑斯蒂回归的先验分布是伯努利分布,softmax的先验分布是多项式分布

LR太简单了,简单到经常被用,但是很多推导仍然迷糊的程度,这篇主要用来总结一下。

线性回归的表达式:
f ( x ) = w T x + b f(x)=w^Tx+b f(x)=wTx+b
由于带一个b,我们可以令 x ′ = [ 1 , x ] T x'=[1, x]^T x=[1,x]T,同时 w ′ = [ b , w ] T w'=[b, w]^T w=[b,w]T,这样直线方程就可以简化成
f ′ ( x ) = w ′ T x f'(x)=w^{'T}x f(x)=wTx
所以,当有m组训练数据,n维features时,一会儿得到的梯度是n+1维,接下来推梯度,先得推导一下loss function。由于线性回归结果是个实数,为了让他属于(0,1)之间,给它过一个sigmoid。如果是多分类,最后接Softmax。假设有一组样本 ( x 1 , y 1 ) , ( x 2 , y 2 ) . . . ( x n , y n ) (x_1,y_1),(x_2,y_2)...(x_n,y_n) (x1,y1),(x2,y2)...(xn,yn),针对2分类的情况, y n = 0 或 1 y_n=0或1 yn=01,给定 x i x_i xi的情况下, y i y_i yi是1的概率是 p i = 1 1 + e x p ( − w x i ) p_i=\frac{1}{1+exp(-wx_i)} pi=1+exp(wxi)1,loss function利用了最大似然的想法:
L = l n [ ∏ i = 1 n p i y i ( 1 − p i ) ( 1 − y i ) ] L = ∑ i [ y i l n p i + ( 1 − y i ) l n ( 1 − p i ) ] o b j = arg max ⁡ w L ( w ) 当 然 可 以 改 成 o b j = arg min ⁡ w − L ( w ) 所 以 L = − ∑ i [ y i l n p i + ( 1 − y i ) l n ( 1 − p i ) ] L=ln[\prod_{i=1}^np_i^{y_i}(1-p_i)^{(1-y_i)}] \\ L=\sum_i[{y_ilnp_i+(1-y_i)ln(1-p_i)]} \\ obj = \argmax_w{L(w)} \\ 当然可以改成 obj = \argmin_w{-L(w)} \\ 所以 \\ L=-\sum_i[{y_ilnp_i+(1-y_i)ln(1-p_i)]} L=ln[i=1npiyi(1pi)(1yi)]L=i[yilnpi+(1yi)ln(1pi)]obj=wargmaxL(w)obj=wargminL(w)L=i[yilnpi+(1yi)ln(1pi)]
接下来开始求梯度,注意 ∂ p i ∂ w i = p i ( 1 − p i ) x i \frac{\partial p_i}{\partial w_i} = p_i(1-p_i)x_i wipi=pi(1pi)xi
∂ L ∂ w = − ∑ i = 1 n x i ( y i − p i ) \frac{\partial L}{\partial w}=-\sum_{i=1}^nx_i(y_i-p_i) wL=i=1nxi(yipi)

最后用Adam求解就可以

另外一个问题是LR是不是凸函数,当然是,因为二阶Hessian矩阵>=0,下面我们求一下二阶导数:
∂ 2 L ∂ 2 w = − ∑ i = 1 n p i ( 1 − p i ) x i x i T > = 0 \frac{\partial^2 L}{\partial^2 w}=-\sum_{i=1}^np_i(1-p_i)x_ix_i^T >= 0 2w2L=i=1npi(1pi)xixiT>=0

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值