11个Python开发者必会的魔术方法(下)

本文详细介绍了Python中的11个魔术方法,如__add__、__sub__、__mul__等,以及如何在Vector2D类中实现这些方法以支持向量运算和属性访问,如标量乘法、点积和属性查找。
摘要由CSDN通过智能技术生成

大家好,我们接上文,继续讲解Python开发者必会的魔术方法。

6.__add__

现在思考一些在向量上执行的常见操作,添加对任意两个向量进行加减运算的魔术方法。如果直接尝试将两个向量对象相加,将遇到错误。添加一个__add__方法:

class Vector2D:
    def __init__(self, x, y):
        self.x = x
        self.y = y

    def __repr__(self):
        return f"Vector2D(x={self.x}, y={self.y})"

    def __add__(self, other):
        return Vector2D(self.x + other.x, self.y + other.y)

现在可以像这样将任意两个向量相加:

v1 = Vector2D(3, 5)
v2 = Vector2D(1, 2)
result = v1 + v2
print(result)
Output >>> Vector2D(x=4, y=7)

7、__sub__

接下来,添加一个__sub__方法来计算Vector2D类的任意两个对象之间的差值:

class Vector2D:
    def __init__(self, x, y):
        self.x = x
        self.y = y

    def __repr__(self):
        return f"Vector2D(x={self.x}, y={self.y})"

    def __sub__(self, other):
        return Vector2D(self.x - other.x, self.y - other.y)
v1 = Vector2D(3, 5)
v2 = Vector2D(1, 2)
result = v1 - v2
print(result)
Output >>> Vector2D(x=2, y=3)

8、__mul__

我们还可以定义一个__mul__方法来定义对象之间的乘法运算。

可以实现:

  • 标量乘法:向量与标量的乘法。

  • 内积:两个向量的点积。

class Vector2D:
    def __init__(self, x, y):
        self.x = x
        self.y = y

    def __repr__(self):
        return f"Vector2D(x={self.x}, y={self.y})"

    def __mul__(self, other):
        # Scalar multiplication
        if isinstance(other, (int, float)):
            return Vector2D(self.x * other, self.y * other)
        # Dot product
        elif isinstance(other, Vector2D):
            return self.x * other.x + self.y * other.y
        else:
            raise TypeError("Unsupported operand type for *")

现在我们举几个例子,来看看__mul__方法的实际应用。

v1 = Vector2D(3, 5)
v2 = Vector2D(1, 2)

# 标量乘法
result1 = v1 * 2
print(result1)  
# 点积
result2 = v1 * v2
print(result2)
Output >>>

Vector2D(x=6, y=10)
13

9、__getitem__

__getitem__魔术方法允许使用熟悉的方括号[]语法,对对象进行索引并访问属性或属性的片段。

对于Vector2D类的对象v

  • v[0]x坐标

  • v[1]y坐标

如果尝试通过索引进行访问,将会遇到错误:

v = Vector2D(3, 5)
print(v[0],v[1])
---------------------------------------------------------------------------

TypeError                              Traceback (most recent call last)

 in ()
----> 1 print(v[0],v[1])

TypeError: 'Vector2D' object is not subscriptable

让我们来实现__getitem__方法:

class Vector2D:
    def __init__(self, x, y):
        self.x = x
        self.y = y

    def __repr__(self):
        return f"Vector2D(x={self.x}, y={self.y})"

    def __getitem__(self, key):
        if key == 0:
            return self.x
        elif key == 1:
            return self.y
        else:
            raise IndexError("Index out of range")

如下所示,现在可以使用索引访问元素了:

v = Vector2D(3, 5)
print(v[0])  
print(v[1])
Output >>>

3
5

10、__call__

通过使用__call__方法,可以像调用函数一样调用对象。

Vector2D类中,我们可以使用一个__call__方法来按给定系数缩放向量:

class Vector2D:
    def __init__(self, x, y):
        self.x = x
        self.y = y
   
    def __repr__(self):
        return f"Vector2D(x={self.x}, y={self.y})"

    def __call__(self, scalar):
        return Vector2D(self.x * scalar, self.y * scalar)

如果现在调用3,就会得到按3倍缩放的向量:

v = Vector2D(3, 5)
result = v(3)
print(result)
Output >>> Vector2D(x=9, y=15)

11、__getattr__

__getattr__方法用于获取对象特定属性的值。

对于这个示例,我们可以添加一个__getattr__魔术方法,当计算向量的幅值(L2-norm)时调用该方法:

class Vector2D:
    def __init__(self, x, y):
        self.x = x
        self.y = y

    def __repr__(self):
        return f"Vector2D(x={self.x}, y={self.y})"

    def __getattr__(self, name):
        if name == "magnitude":
            return (self.x ** 2 + self.y ** 2) ** 0.5
        else:
            raise AttributeError(f"'Vector2D' object has no attribute '{name}'")

现在来验证一下是否能按预期工作:

v = Vector2D(3, 4)
print(v.magnitude)
Output >>> 5.0

综合上下两篇文章的内容,我们介绍了11个最常用的魔术方法。通过本文,可以学习如何向类中添加魔术方法来模拟内置函数的行为,创建一个自己的Python类,并根据所需的功能添加魔术方法。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

python慕遥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值