时间序列预测实践过程

构建时间序列的支付单量预测模型通常涉及以下步骤:

  1. 数据收集与清洗:

    1. 收集历史支付单量数据。

    2. 清洗数据,包括处理缺失值、异常值和重复记录。

    3. 确保数据的一致性,例如统一支付时间戳的格式。

  2. 数据探索与分析:

    1. 进行描述性统计分析以了解数据的基本特征。

    2. 绘制时间序列图,观察数据的季节性、趋势和周期性。

       
      result = seasonal_decompose(data['value'], model='additive')
      result.plot()
      plt.show()

      如何判断使用加法模型还是乘法模型分解?

             

           选择哪种模型取决于数据的特点和业务需求。以下是一些建议:

      1. 观察数据的趋势和季节性成分:如果数据的季节性成分在不同趋势水平下保持稳定,那么加法模型可能更合适。如果数据的季节性成分随着趋势的变化而变化,那么乘法模型可能更合适。

      2. 检查数据的残差:在拟合加法或乘法模型后,检查残差以确定哪个模型更好地捕捉了数据中的规律。如果残差呈现出随机分布,那么所选模型可能更合适。

      3. 考虑业务背景:根据业务需求和对数据的理解,选择更适合的模型。例如,在销售额预测中,乘法模型可能更合适,因为销售额的季节性波动可能随着市场环境的变化而变化。

      4. 计算自相关和偏自相关函数,以识别数据中的潜在相关性。

        # 计算自相关函数
        acf_values = acf(data['value'])
        
        # 计算偏自相关函数
        pacf_values = pacf(data['value'])
        
        # 绘制自相关和偏自相关函数图
        
        plot_acf(data['value'])
        plot_pacf(data['value'])
        plt.show()

        1.   自相关函数(ACF)

          1. 自相关系数可以理解为将一列数据按照滞后数拆分成两列,然后计算这两列数据之间的相关系数。它衡量的是当前观测值与其之前观测值之间的相关性。
          2. ACF图像中的每个点代表不同滞后期数的自相关系数。如果某个滞后期的自相关系数显著不为0,则表明在该滞后期存在自相关性。
        2. 偏自相关函数(PACF)

          1. 偏自相关函数表示在给定中间观测值为条件时,当前观测值与过去某一特定滞后期数的观测值之间的相关性。
          2. PACF图像中的截尾性质是AR模型的一个重要特征,即在某个点之后,偏自相关系数变为0或接近0,这表明增加更多的滞后变量不会改善预测效果。
          3. PACF图像通常用于识别AR模型的阶数,即应该包含多少个滞后变量来拟合时间序列数据。
          4. ACF图像通常用来识别时间序列数据中的季节性成分或者周期性成分。   
        3. 结论:由上图,ACF呈拖尾衰减,说明是平稳序列。
  3. 平稳性检验:

    1. 对时间序列数据进行平稳性检验(如ADF检验)。

    2. 倘若数据非平稳,通过差分、对数转换等方法使其平稳。

      from statsmodels.tsa.stattools import adfuller
      result = adfuller(data['value'])
      print('ADF Statistic: %f' % result[0])
      print('p-value: %f' % result[1])
      out:
      ADF Statistic: -3.123396
      p-value: 0.024870
      

  4. 模型选择:

    1. 根据数据特性选择合适的时间序列预测模型,如ARIMA、SARIMA、Holt-Winters季节性预测、Facebook Prophet、LSTM神经网络等。

      1. 模型选择方法:

      2. 数据的平稳性:如果时间序列数据是平稳的,即数据的统计特性(如均值、方差)不随时间变化,可以考虑使用ARIMA模型。ARIMA模型适用于分析和预测具有趋势和季节性的平稳时间序列数据。
      3. 季节性因素:如果数据存在明显的季节性变化,可以选择包含季节差分的ARIMA模型,或者使用SARIMA(季节性自回归积分滑动平均)模型来捕捉和预测季节性模式。
      4. 非线性关系:如果时间序列数据中存在非线性关系,可以考虑使用基于深度学习的模型,如LSTM(长短期记忆)网络或RNN(循环神经网络)。这些模型能够捕捉复杂的非线性模式,适合处理如文本、音频等顺序数据。
      5. 训练时间和计算资源:基于深度学习的模型可能需要较长的训练时间和更多的计算资源。如果训练时间是一个关键因素,可能需要优先考虑传统的时间序列分析方法,如ARIMA模型。
      6. 预测范围:如果需要长期预测,传统模型可能更为合适,因为它们通常对远外推(long-term extrapolation)更加稳定。而深度学习模型可能在短期内提供更准确的预测,但可能不适合长期预测。
      7. 数据量:深度学习模型通常需要大量的数据来进行训练,以便捕捉复杂的模式。如果数据量有限,传统模型可能更为合适。
      8. 模型解释性:如果需要模型具有良好的解释性,传统模型如ARIMA可能更适合,因为它们的参数和经济意义之间有直接的联系。
      9. 实际应用案例:参考类似领域的应用案例,了解其他研究者或从业者在类似问题上选择的模型,可以为模型选择提供有价值的参考。
      10. 实验比较:建立几个不同的时间序列模型,并通过交叉验证等方法比较它们的预测性能,最终选择表现最佳的模型。
      11. 专业知识和经验:结合领域专家的知识和以往经验,对模型的选择也有很大的帮助。
      12. 资源的可用性:考虑到实际可用的计算资源和技术能力,选择最适合当前条件的模型。
      13. 模型的泛化能力:考虑模型在新数据上的泛化能力,选择能够在未见过的数据上也表现良好的模型
    2. 使用交叉验证来评估不同模型的性能。

  5. 参数调优: (1)对选定的模型进行参数调优,比如使用网格搜索或随机搜索来寻找最优参数组合。

  6. 模型训练: (1)用历史数据训练模型。 (2)应用模型诊断,如残差分析,确保模型拟合良好。

  7. 模型验证: (1)在测试集上评估模型性能,常用指标有均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)等。 (2)可以通过滚动预测或时间序列交叉验证来进行更严格的验证。

  8. 预测: (1)使用最终模型进行未来支付单量的预测。 (2)根据需要生成置信区间,以评估预测的不确定性。

  9. 结果解释与部署: (1)解释模型的预测结果,考虑如何将预测结果应用于业务决策。 (2)部署模型以便定期自动运行预测,并将结果报告给相关利益相关者。

  • 17
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值