numpy log1p()和exmp1()

log1p和expm1

原文
https://blog.csdn.net/qq_36523839/article/details/82422865?utm_source=blogxgwz0

    log1p = log(x+1)      即ln(x+1)
    expm1 = exp(x)-1

log1p函数有它存在的意义,即保证了x数据的有效性,当x很小时(如 两个数值相减后得到x = 10^{-16}),由于太小超过数值有效性,用log(x+1)计算得到结果为0,换作log1p则计算得到一个很小却不为0的结果,这便是它的意义(用泰勒公式来展开运算的)。

对于x的小值,这个函数提供了比exp(x) - 1更高的精度。

>>> np.expm1(1e-10)
1.00000000005e-10
>>> np.exp(1e-10) - 1
1.000000082740371e-10

log1p 和 expm1 互为逆运算

y = log ⁡ ( 1 + x ) y = \log(1+x) y=log(1+x)
e x p ( y ) = 1 + x exp(y) = 1+x exp(y)=1+x
x = e x p ( y ) − 1 x = exp(y) - 1 x=exp(y)1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值