Noise2Noise:Learning Image Restoration without Clean Data读书笔记

Noise2Noise论文提出,在没有干净图像的情况下,利用噪声图像也能进行有效的图像恢复。通过深度神经网络,模型在多个任务中表现出与使用干净数据相当甚至更好的效果,如摄影噪声去除、合成蒙特卡罗渲染噪声消除和MRI重建。论文强调,这种方法无需明确的噪声模型或图像先验,仅依靠噪声图像进行训练,简化了实际信号重建的复杂性。实验表明,尽管存在噪声,训练依然能够收敛,并且在数据有限时,通过增加潜在干净图像的数量,可以显著提高训练效率和恢复质量。
摘要由CSDN通过智能技术生成

论文题目:Noise2Noise: Learning Image Restoration without Clean Data

一、简介

论文提出,在没有干净数据的情况下也能对图像进行重建,重建效果和使用干净数据恢复一样好甚至在有些情况下更好。论文展示了单个模型进行了摄影噪声去除,合成蒙特卡罗渲染去除,以及欠采样MRI扫描的重建 。

论文使用\widehat{x}表示输入的噪声图像,并且是根据对应的干净图像随机分布的变量,\widehat{x}\sim p(\widehat{x}|y_{i}),论文仅仅是根据噪声图像对图像进行修复,此外,既不需要明确的噪声统计似然模型,也不需要图像先验,而是间接地从训练数据中学习这些信息。虽然从统计的角度来看,论文的结果没有很大的优势,但它通过提升训练数据的可用性要求,极大地简化了实际的信号重建。

二、知识理论背景

假设有一组不可靠的室温测量值(y1,y2,...)。估计真正未知温度的一个常见策略是根据损失函数L找到一个与测量值的平均偏差最小的z:

当L为L2时,L(z,y) = (z-y)^{2},这个最小值是在观测值的算术平均值处找到的。

当L为L1时,L(z,y)=|z-y|,则最优解为观测值的中值。

当L为L0时,L(z,y)=|z-y|^{_{0}},即差不为0的个数,最优解为观测值的众数。

从统计的角度看,这些常用的损失函数可以看作负对数似然函数的最大似然估计。

神经网络的训练的目标函数如下:

如果对输入数据的依赖去掉的话,目标函数变为:

  • 3
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值