图学习(一)Graph Attention Networks

本文介绍了图注意力网络(GAT),一种针对图结构数据的新方法,解决了图卷积网络在inductive任务和有向图处理中的局限性。GAT允许节点根据邻居特征分配不同权重,无需预先构建图,适用于动态图问题。通过逐节点的注意力机制,GAT能够在保持计算效率的同时捕捉图的复杂结构。
摘要由CSDN通过智能技术生成

背景

研究机构:Department of Computer Science and Technology;Centre de Visi´o per Computador, UAB;Montreal Institute for Learning Algorithms
来源:ICLR2018

摘要

针对图结构的数据,本文提出了一种图注意力网络GAT,该网络使用masked self-attention用于解决之前图卷积模型中存在的问题。在GAT中,图中的每个节点可以根据邻节点的特征,为其分配不同的权值。GAT的另一个优点在于,无需使用预先构建好的图。

动机

GCN的局限性:
(1)无法完成inductive任务,即处理动态图问题。
inductive任务是指:训练阶段与测试阶段需要处理的graph不同。通常是训练阶段只是在子图(subgraph)上进行,测试阶段需要处理未知的顶点。(unseen node)
(2)处理有向图的瓶颈,不容易实现分配不同的学习权重给不同的neighbor。

方法

作者提到,GAT的实现方式可以有两种思路。其一,Global graph attention
即每一个顶点 i i i都对图上任意顶点进行attention操作。优点:完全不依赖于图的结构,可以很好的完成inductive任务。缺点:计算量巨大,并且数据本身的图结构特点丢失,可能导致很差的结果。

其二,Mask graph attention,注意力机制的运算只在邻居顶点上进行。作者采用的是这种方式。
具体细节:
与一般的attention方法类似,GAT的计算步骤也是两步走策略:
(1)计算注意力分布(即用于加权的系数)

对于顶点 i i i,逐个计算各个邻居 j ( j ∈ N i ) j(j\in N_i) j(jNi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值