背景
研究机构:Department of Computer Science and Technology;Centre de Visi´o per Computador, UAB;Montreal Institute for Learning Algorithms
来源:ICLR2018
摘要
针对图结构的数据,本文提出了一种图注意力网络GAT,该网络使用masked self-attention用于解决之前图卷积模型中存在的问题。在GAT中,图中的每个节点可以根据邻节点的特征,为其分配不同的权值。GAT的另一个优点在于,无需使用预先构建好的图。
动机
GCN的局限性:
(1)无法完成inductive任务,即处理动态图问题。
inductive任务是指:训练阶段与测试阶段需要处理的graph不同。通常是训练阶段只是在子图(subgraph)上进行,测试阶段需要处理未知的顶点。(unseen node)
(2)处理有向图的瓶颈,不容易实现分配不同的学习权重给不同的neighbor。
方法
作者提到,GAT的实现方式可以有两种思路。其一,Global graph attention
即每一个顶点 i i i都对图上任意顶点进行attention操作。优点:完全不依赖于图的结构,可以很好的完成inductive任务。缺点:计算量巨大,并且数据本身的图结构特点丢失,可能导致很差的结果。
其二,Mask graph attention,注意力机制的运算只在邻居顶点上进行。作者采用的是这种方式。
具体细节:
与一般的attention方法类似,GAT的计算步骤也是两步走策略:
(1)计算注意力分布(即用于加权的系数)
对于顶点 i i i,逐个计算各个邻居 j ( j ∈ N i ) j(j\in N_i) j(j∈Ni