本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。
YOLOv8一个令人惊叹的物体检测人工智能模型。与 YOLOv5 及之前的版本不同,您不需要克隆存储库、设置需求或手动配置模型。使用 YOLOv8,您只需安装 Ultralytics,我将向您展示如何使用一个简单的命令。YOLOv8 通过引入新的功能和改进,增强了早期 YOLO 版本的成功,从而提高了性能和多功能性。由于其速度、精度和用户友好的设计,它成为对象识别和跟踪、实例分割、图像分类和姿势估计等各种任务的理想选择。您可以在YOLOv8的官方网站上找到更多信息。
https://github.com/ultralytics/ultralytics/
我们可以使用这个模型执行三种任务。
(1) 目标检测
(2) 图像分割
(3) 图像分类
目标检测
我们可以使用下表中的任何一种模型进行物体检测:
图像分割
也可以使用下表中的任何一种模型进行图像分割:
图像分类
也可以使用下表中的任何一种模型进行图像分类:
现在我将使用Google colab来进行训练。
安装之前我需要连接我的 GPU:
在上图中选择 GPU 作为硬件加速器后单击“保存”按钮。
挂载 Google 驱动器,以便 colab 可以访问其文件。
在上面的屏幕中选择安装按钮后,单击“连接到 Google 云端硬盘”按钮。现在我们的笔记本已经连接到Google Drive了。
要测试我们是否有 GPU,请在 colab 上编写以下命令。
如