本文来源公众号“python”,仅用于学术分享,侵权删,干货满满。
原文链接:Python 蒙特卡洛模拟
蒙特卡洛模拟是一种基于随机数和概率分布的数值计算方法,广泛应用于金融、物理、工程等领域,用于解决复杂的概率问题。它通过多次随机实验,逼近问题的解或估计某些指标的值。在现代计算中,Python 提供了丰富的库和工具,可以高效地实现蒙特卡洛模拟。
蒙特卡洛模拟的基本原理
蒙特卡洛模拟的核心思想是通过随机抽样和大量实验,逼近真实结果。
其基本步骤包括:
-
构建数学模型:明确问题并将其表示为概率问题。
-
生成随机样本:根据问题的概率分布,生成大量随机数据。
-
模拟实验:对每个随机样本执行实验或计算。
-
统计结果:通过实验结果估计目标值或概率。
蒙特卡洛模拟的精度取决于实验次数:实验次数越多,结果越接近真实值。
示例数据准备
在实际问题中,蒙特卡洛模拟可以用于估算 π 的值、金融风险评估、随机过程模拟等。以下通过估算 π 的值引入基本实现。
用蒙特卡洛模拟估算 π 的值
在一个单位正方形中,画一个内接圆。通过随机生成点计算落入圆内的点占总点数的比例,可以近似求得