python | Python 蒙特卡洛模拟

本文来源公众号“python”,仅用于学术分享,侵权删,干货满满。

原文链接:Python 蒙特卡洛模拟

蒙特卡洛模拟是一种基于随机数和概率分布的数值计算方法,广泛应用于金融、物理、工程等领域,用于解决复杂的概率问题。它通过多次随机实验,逼近问题的解或估计某些指标的值。在现代计算中,Python 提供了丰富的库和工具,可以高效地实现蒙特卡洛模拟。

蒙特卡洛模拟的基本原理

蒙特卡洛模拟的核心思想是通过随机抽样和大量实验,逼近真实结果。

其基本步骤包括:

  1. 构建数学模型:明确问题并将其表示为概率问题。

  2. 生成随机样本:根据问题的概率分布,生成大量随机数据。

  3. 模拟实验:对每个随机样本执行实验或计算。

  4. 统计结果:通过实验结果估计目标值或概率。

蒙特卡洛模拟的精度取决于实验次数:实验次数越多,结果越接近真实值。

示例数据准备

在实际问题中,蒙特卡洛模拟可以用于估算 π 的值、金融风险评估、随机过程模拟等。以下通过估算 π 的值引入基本实现。

用蒙特卡洛模拟估算 π 的值

在一个单位正方形中,画一个内接圆。通过随机生成点计算落入圆内的点占总点数的比例,可以近似求得

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值