本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。
原文链接:初学者指南 -- 什么是迁移学习?
假设您有一个想要用计算机视觉解决的问题,但可用于建立新模型的图像却很少。您该怎么办?您可以等待收集更多数据,但如果您想捕捉的特征很难找到(例如,野生珍稀动物、产品缺陷),这可能是站不住脚的。
这就是迁移学习的用武之地。在本文中,我们将讨论:
- 什么是迁移学习?
- 迁移学习如何起作用?
- 何时应使用迁移学习
什么是迁移学习?
迁移学习是一种计算机视觉技术,在现有模型的基础上构建新模型。这样做的目的是鼓励新模型从旧模型中学习特征,以便新模型能够更快地以更少的数据进行训练以实现其目的。
“迁移学习”这个名称说明了这项技术的含义:将一个模型获得的知识迁移到可以从该知识中受益的新模型。这类似于你将绘画知识迁移到素描中(色彩理论、审美观),尽管这两项任务不同。
探索迁移学习示例
想象一下在非洲的一次狩猎旅行中收集到的动物图像。数据集由长颈鹿和大象的图像组成。现在假设您想要建立一个模型,该模型可以区分长颈鹿和大象,并将这些图像作为计算特定区域内野生动物数量的模型的一部分的输入。
您可能首先想到的是从头开始构建一个图像识别模型来实现这一