独家:马化腾回应微信“偷窥”相册

120e635c77f18a87986ed7fb16e58967.gif

出品 | CSDN(ID:CSDNnews)

针对早前微信被爆在后台反复读取用户相册的事件,1 月 5 日,马化腾独家回应:“应该是 21 年 10 月的事了,图片缓存加速造成的误会,后面应该用 iOS 新的解决卡顿的 API 解决了。”并特别表示,“可以帮忙辟谣”。

ab08c693fb043276e9f0d787b2b174ef.jpeg

2021 年 10 月 8 日,数码博主、软件开发工程师 @Hackl0us 发表微博称包括微信等在内的多款国民级 App 在后台反复读取用户相册。当时,iOS 15 上新隐私特性「记录 App 活动」,Hackl0us 的朋友将其开启,而后对所有 App 的隐私读取行为进行了 7 天的监控,并使用 App Privacy Insights 对记录进行读取。由此发现,微信在用户未主动激活 App 的情况下,在后台数次读取用户相册,每次读取时间长达 40 秒 至 1 分钟不等。

b3ac8fa073b2f9a8d435c598ced353c7.png

图源:https://weibo.com/2480678791/KBLLsdRNW

自此,一石激起千层浪,直接冲上了微博热搜。随后,微信官方团队回应称,当用户授权微信可以读取“系统相册权限”的前提后,为便于用户在微信聊天中按“+”时可以快速发图,微信使用了该系统能力,使用户发送图片体验更快速流畅。微信指出,上述行为均仅在手机本地完成,最新版本中其将取消对该系统能力的使用,优化快速发图功能。

微信面世至今,已走过了十余年的时光,据腾讯发布的 2023 年第三季度财报显示,微信及 WeChat 合并月活账户数已高达 13.36 亿,稳坐“国民第一社交 App”的宝座。

一旦有隐私安全问题,其影响范围之广,不言而喻。

彼时,在经过微信官方回应之后,此事即告一段落,但这一疑问并没有得到彻底的消除,CSDN 在就此事件咨询安全专家时,其表示,微信的这一事件,“根本的原因是因为在功能设计层面,微信在当时应该是在安全上没有做到充分设计。在正常的软件工程流程里,功能设计时就应该引入相关安全设计,除了解决软件本身的安全缺陷问题和攻击面暴露情况之外,还应该在隐私权限这一部分去做设计,最起码要遵循权限最小化和非必要不采集的原则,规避触犯隐私保护法等相关的法律法规的情况。当然,国内隐私保护这一部分立法相对较晚,再加上互联网的软件开发流程也存在诸多不完善的情况,后期通过完善流程和在设计阶段引入隐私保护等安全设计,可以从根本上解决问题。”

对于马化腾的回应,安全专家表示,“在没有证据出现之前,应该选择相信腾讯,作为一个上市公司,应该没人愿意拿企业信誉去赌这种事儿。”

c72faac78e20663a100f32a64e9a2d0d.png

如今在最新版本的 iOS 系统之下,笔者打开隐私报告进行测试,监测到微信会在用户明确操作的前提下,对位置和相册进行访问,安全专家表示,今天隐私保护相较过去更为完善,操作系统也为用户提供了更多的手段来保护用户的隐私数据,当用户觉得有问题时,可以拒绝或关闭相关权限。

54f863750a9a5939294c397c723f7b80.gif

推荐阅读:

▶商汤要让人工智能走进千家万户!

▶为什么 Android 开发人员不再需要 Windows USB 驱动程序?

▶北京程序员年收入中位数超 60 万元;OpenAI 拟下周推出 GPT 商店;钉钉个人版全量上线|极客头条

0f2234dc5d91a5bb5f6cf1bb31f293d1.jpeg

在本章中,我们将深入探讨基于块匹配的全景图像拼接技术,这是一种广泛应用于计算机视觉和图像处理领域的技术。在深度学习和机器学习的背景下,这种方法的实现与整合显得尤为重要,因为它们能够提升图像处理的效率和精度。下面,我们将会详细阐述相关知识点。 我们要了解什么是全景图像拼接。全景图像拼接是一种将多张有限视角的图像合并成一个宽视角或全方位视角图像的技术,常用于虚拟现实、地图制作、监控系统等领域。通过拼接,我们可以获得更广阔的视野,捕捉到单个图像无法覆盖的细节。 块匹配是全景图像拼接中的核心步骤,其目的是寻找两张图片中对应区域的最佳匹配。它通常包括以下几个关键过程: 1. **图像预处理**:图像的预处理包括灰度化、直方图均衡化、降噪等操作,以提高图像质量,使匹配更加准确。 2. **特征提取**:在每张图像上选择特定区域(块)并计算其特征,如灰度共生矩阵、SIFT(尺度不变特征变换)、SURF(加速稳健特征)等,这些特征应具备旋转、缩放和光照不变性。 3. **块匹配**:对于每一张图像的每个块,计算与另一张图像所有块之间的相似度,如欧氏距离、归一化互信息等。找到最相似的块作为匹配对。 4. **几何变换估计**:根据匹配对确定对应的几何关系,例如仿射变换、透视变换等,以描述两张图像之间的相对位置。 5. **图像融合**:利用估计的几何变换,对图像进行融合,消除重叠区域的不一致性和缝隙,生成全景图像。 在MATLAB环境中实现这一过程,可以利用其强大的图像处理工具箱,包括图像读取、处理、特征检测和匹配、几何变换等功能。此外,MATLAB还支持编程和脚本,方便算法的调试和优化。 深度学习和机器学习在此处的角色主要是改进匹配过程和图像融合。例如,通过训练神经网络模型,可以学习到更具鲁棒性的特征表示,增强匹配的准确性。同时,深度学习方法也可以用于像素级别的图像融合,减少拼接的失真和不连续性。 在实际应用中,我们需要注意一些挑战,比如光照变化、遮挡、动态物体等,这些因素可能会影响匹配效果。因此,往往需要结合其他辅助技术,如多视图几何、稀疏重建等,来提高拼接的稳定性和质量。 基于块匹配的全景图像拼接是通过匹配和融合多张图像来创建全景视图的过程。在MATLAB中实现这一技术,可以结合深度学习和机器学习的先进方法,提升匹配精度和图像融合质量。通过对压缩包中的代码和数据进行学习,你可以更深入地理解这一技术,并应用于实际项目中。
基于Python+OpenCV的全景图像拼接系统设计与实现 本系统的设计与实现基于Python和OpenCV,旨在提供一个高效、准确的全景图像拼接系统。系统的前台界面使用了最新的HTML5技术,使用DIV+CSS进行布局,使整个前台页面变得更美观,极大的提高了用户的体验。后端的代码技术选择的是PYTHON,PYTHON语言是当下最常用的编程语言之一,可以保证系统的稳定性和流畅性,PYTHON可以灵活的与数据库进行连接。 系统的数据使用的MYSQL数据库,它可以提高查询的速度,增强系统数据存储的稳定性和安全性。同时,本系统的图像拼接技术以OpenCV为核心,最大化提升图片拼接的质量。 本系统的设计与实现可以分为以下几个部分: 一、系统架构设计 本系统的架构设计主要基于Python和OpenCV,使用MYSQL数据库存储数据。系统的前台界面使用HTML5技术,后端使用PYTHON语言连接MYSQL数据库,实现图像拼接功能。 二、图像拼接算法 本系统使用OpenCV库实现图像拼接,OpenCV库提供了丰富的图像处理功能,可以实现图像拼接、图像识别、图像处理等功能。通过OpenCV库,可以实现高效、准确的图像拼接。 三、系统实现 本系统的实现主要基于Python和OpenCV,使用MYSQL数据库存储数据。系统的前台界面使用HTML5技术,后端使用PYTHON语言连接MYSQL数据库,实现图像拼接功能。同时,本系统还实现了用户认证、数据加密、数据备份等功能,以确保系统的安全和稳定性。 四、系统优点 本系统的优点有: * 高效:本系统使用OpenCV库实现图像拼接,可以实现高效的图像拼接。 * 准确:本系统使用OpenCV库实现图像拼接,可以实现准确的图像拼接。 * 安全:本系统实现了用户认证、数据加密、数据备份等功能,以确保系统的安全和稳定性。 * 灵活:本系统使用PYTHON语言,可以灵活的与数据库进行连接,实现灵活的图像拼接功能。 本系统的设计与实现可以提供一个高效、准确的全景图像拼接系统,为用户提供了一个方便、快捷的图像拼接体验。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSDN资讯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值