NEFU OJ 2352 小兰与名氏距离

Time Limit:1000ms
Memory Limit:65535K

Description

在这里插入图片描述

Input

输入第一行包含一个整数 N,
表示二维空间中点的数目。

接下来包含 N 行,第行包含两个整数,
表示一个点对的 X 坐标和 Y 坐标。

Output

输出一行,包含一个整数,
表示距离与p 无关的点对数目。

Sample Input

3
0 1
1 0
1 1

Sample Output

2

Hint

在这里插入图片描述

Solution

题目要求找出几对点之间的明式距离与 p p p 无关。
观察以下明式距离公式: ( ∣ x 1 − x 2 ∣ p + ∣ y 1 − y 2 ∣ p ) 1 p (\left | x_1 - x_2 \right |^p + \left | y_1 - y_2 \right |^p)^\frac{1}{p} (x1x2p+y1y2p)p1
可以发现使 p p p 无关有两种情况: ∣ x 1 − x 2 ∣ = 0 |x_1-x_2|=0 x1x2=0 ∣ y 1 − y 2 ∣ = 0 |y_1-y_2|=0 y1y2=0

所以可将所有点分别对横坐标和纵坐标进行排序,找出具有相同横(纵)坐标 点的数量 n n n
最终答案即为 ∑ C n 2 = ∑ n ( n − 1 ) 2 \sum C_n^2=\sum\frac{n(n-1)}{2} Cn2=2n(n1)

注:代码中 auto 部分是测试 C++11 用的,比较函数正常写在外面就行。

Code

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

pair<int,int> p[100000];

int main()
{
	int n;
	cin>>n;
	for(int i=0;i<n;i++) cin>>p[i].first>>p[i].second;
	auto cmp1=[](pair<int,int> p1,pair<int,int> p2) {
		return p1.first<p2.first;
	};
	auto cmp2=[](pair<int,int> p1,pair<int,int> p2) {
		return p1.second<p2.second;
	};
	sort(p,p+n,cmp1);
	ll ans=0,cnt=0;
	int last=1e9+1;
	for(int i=0;i<n;i++)
	{
		if(p[i].first==last) cnt++;
		else
		{
			ans+=cnt*(cnt-1)/2;
			cnt=1;
			last=p[i].first;
		}
	}
	ans+=cnt*(cnt-1)/2;
	
	sort(p,p+n,cmp2);
	cnt=0;
	last=1e9+1;
	for(int i=0;i<n;i++)
	{
		if(p[i].second==last) cnt++;
		else
		{
			ans+=cnt*(cnt-1)/2;
			cnt=1;
			last=p[i].second;
		}
	}
	ans+=cnt*(cnt-1)/2;
	cout<<ans;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值