曼哈顿距离,欧式距离,明式距离,切比雪夫距离区别

根据我浅薄的知识,以及粗浅的语言,随意总结一下。

1.曼哈顿距离

曼哈顿距离又称Manhattan distance,还见到过更加形象的,叫出租车距离的。具体贴一张图,应该就能明白。

上图摘自维基百科,红蓝黄皆为曼哈顿距离,绿色为欧式距离。


2.欧式距离

欧式距离又称欧几里得距离欧几里得度量Euclidean Metric),以空间为基准的两点之间最短距离,与之后的切比雪夫距离的差别是,只算在空间下。

说的通俗点,就是初中知识,两点之间直线最短的概念。


3.切比雪夫距离

切比雪夫距离又称(Chebyshev distance)或者(Supremum distance)。

这是一个最装逼的距离,因为需要使用时候,其纬度起码为3及以上。

数学上,切比雪夫距离Chebyshev distance)或是L度量向量空间中的一种度量,二个点之间的距离定义为其各座标数值差的最大值。

上句摘自维基百科,但是这玩意鬼看得懂啊,为了更好的理解切比雪夫距离,我在这里举一个通俗易懂的例子:

比如,有同样两个人,在纽约准备到北京参拜天安门,同一个地点出发的话,按照欧式距离来计算,是完全一样的。

但是按照切比雪夫距离,这是完全不同的概念了。

譬如,其中一个人是土豪,另一个人是中产阶级,第一个人就能当晚直接头等舱走人,而第二个人可能就要等机票什么时候打折再去,或者选择坐船什么的。

这样来看的话,距离是不是就不一样了呢?

或者还是不清楚,我再说的详细点。

同样是这两个人,欧式距离是直接算最短距离的,而切比雪夫距离可能还得加上财力,比如第一个人财富值100,第二个只有30,虽然物理距离一样,但是所包含的内容却是不同的。


4.明式距离

明氏距离又叫做明可夫斯基距离(Minkowski distance),根本不是种概念,或者可以说是以一种集合或者公式。

当纬度等于1时候,其公式等价于曼哈顿距离。

等于2时候,其公式等价于欧式距离。

当大于2到无穷大时候,其公式等价于切比雪夫距离。



欧式距离(Euclidean Distance)是一种常用的距离度量方法,用于计算两个点之间的直线距离。在二维平面上,欧式距离可以通过勾股定理计算得出。在多维空间中,欧式距离的计算公式为: d(x, y) = sqrt((x1 - y1)^2 + (x2 - y2)^2 + ... + (xn - yn)^2) 其中,x和y分别表示两个点的坐标,n表示维度。 切实距离(Chebyshev Distance)也称为切比雪夫距离,是一种用于计算两个点之间的最大维度差异的距离度量方法。在二维平面上,切实距离可以通过取两个点在x轴和y轴上坐标差值的最大值来计算。在多维空间中,切实距离的计算公式为: d(x, y) = max(|x1 - y1|, |x2 - y2|, ..., |xn - yn|) 明式距离(Manhattan Distance)也称为曼哈顿距离或城市街区距离,是一种用于计算两个点之间在网格状道路上的最短路径长度的距离度量方法。在二维平面上,明式距离可以通过两个点在x轴和y轴上坐标差值的绝对值之和来计算。在多维空间中,明式距离的计算公式为: d(x, y) = |x1 - y2| + ... + |xn - yn| K-means是一种常用的聚类算法,它通过将数据集划分为K个簇,使得每个数据点都属于离其最近的簇中心。在K-means算法中,通常使用欧式距离作为数据点之间的距离度量方法。具体而言,K-means算法的步骤如下: 1. 随机选择K个初始簇中心。 2. 将每个数据点分配到离其最近的簇中心。 3. 更新每个簇的中心为该簇内所有数据点的平均值。 4. 重复步骤2和步骤3,直到簇中心不再发生变化或达到最大迭代次数。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值