【论文阅读笔记】HetConv: Heterogeneous Kernel-Based Convolutions for Deep CNNs

       论文地址:https://arxiv.org/abs/1903.04120

      本文是CVPR2019上发表的一篇文章,文章主要设计了新的滤波器结构,在大幅减少FLOPS的前提下还能保证延迟和准确性。

      文章将现有的卷积过滤器大致分为三类:1)深度方面的卷积过滤器,用于执行逐深度的卷积(DWC2)点方面的卷积过滤器,用于执行逐点卷积(PWC3)分组方面的卷积过滤器,用于执行逐分组卷积(GWC)。目前的大多数架构都使用了这些卷积过滤器的组合来得到高效的模型。很多常见的模型也使用了这些卷积(比如 DWCPWC GWC)来探索可以降低 FLOPs 的新架构。另一种提升模型效率的常用方法是压缩模型。模型压缩大致可以分为三类:连接剪枝、过滤器剪枝和量化。

      本文提出的方法不同于以上方法,主要侧重于设计新的卷积核,传统的卷积和按文中说法成为同构卷积(homogeneous convolution),即该过滤器包含的所有卷积核都是同样大小(比如在 3 × 3 × 256 CONV2D 过滤器中,所有 256 个核都是 3×3 大小),本文提出的是异构卷积(heterogeneous convolution), 即过滤器包含不同大小的卷积核(比如在某个 HetCOnv 过滤器中,256 核有的是 3×3 大小,其余的是 1×1 大小)。从文章中几个贴图可以很明显的看出这种异构思想:

文章同时比较了不同种类卷积网络的延迟

从实验结果上看模型的准确度无损失,同时 FLOPs 降低了显著更多,详见原论文。

       本文的新意在于就卷积核内部进行设计,但文章中对P的取值是出于实验结论,对具体应用最优的P值没有理论和实验分析,因此值得更进一步探索。

<think>好的,用户想了解FedSSA方法及其在个性化联邦学习中的应用,特别是关于基于语义相似性的聚合模型在异质联邦学习中的情况。首先,我需要回顾一下联邦学习的基本概念,尤其是个性化联邦学习(PFL)的相关知识。个性化联邦学习的目标是在保护数据隐私的同时,为不同客户端定制适合各自数据分布的模型,这与传统的联邦学习不同,传统方法通常训练一个全局模型,可能无法适应各客户端的局部数据特性。 接下来,用户提到的FedSSA,全称是Semantic Similarity-based Aggregation,即基于语义相似性的聚合方法。我需要查阅相关文献,看看这个方法是如何处理模型异质性的。在异质联邦学习中,各个客户端的模型结构可能不同,这增加了聚合的难度,因为传统的联邦平均(FedAvg)等方法需要模型参数结构一致才能进行平均。FedSSA可能通过分析模型之间的语义相似性,而不是直接聚合参数,来解决这个问题。 根据引用内容[^1],FedMF在处理冷启动推荐时忽略了高阶交互,而FedSSA可能通过语义相似性来捕捉这些高阶特征。例如,在推荐系统中,用户和项目的交互可能不仅仅是直接的,还可能通过社交网络或其他隐含关系形成高阶交互。FedSSA可能利用这些语义信息来改进模型聚合,提升个性化推荐的性能。 然后,我需要分析FedSSA的具体机制。语义相似性可能指的是模型在特征空间或输出空间中的相似性。例如,通过比较不同客户端模型的特征表示或预测结果,计算它们之间的相似度,然后基于这些相似度进行模型聚合或参数调整。这种方法允许异质模型之间进行有效的知识传递,而无需统一模型结构,从而支持个性化学习。 另外,用户提到的模型异质性问题,FedSSA可能采用模型无关的聚合策略,比如通过知识蒸馏或迁移学习,将不同模型的知识整合到一个共享的表示空间中,再根据相似性进行聚合。例如,每个客户端模型生成嵌入向量,服务器计算这些嵌入的相似性,并据此调整聚合权重,使得相似客户端对彼此的模型更新贡献更大,从而提升个性化效果。 还需要考虑FedSSA在实验中的表现,尤其是在冷启动场景下的推荐效果。引用中提到的FedGNN、FedSog等方法通过图扩展改进,而FedSSA可能通过语义相似性聚合来补充这一点,特别是在数据稀疏或新用户/项目出现时,利用语义信息弥补数据不足的问题。 最后,综合这些信息,我需要以清晰的结构将FedSSA的工作原理、在异质联邦学习中的优势以及应用场景整理出来,确保回答准确且符合用户需求。同时,生成的相关问题应围绕FedSSA的机制、对比其他方法、性能评估和应用挑战展开,帮助用户深入理解该模型。</think>### FedSSA方法及其在个性化联邦学习中的应用 FedSSA(基于语义相似性的聚合)是一种面向**模型异质性**的个性化联邦学习方法,旨在解决传统联邦学习中客户端数据分布差异大、模型结构不一致导致的聚合效率低的问题。其核心是通过分析客户端模型的**语义相似性**而非参数对齐来实现知识共享,从而提升个性化模型的性能[^1]。 #### 1. FedSSA的核心机制 - **语义相似性度量**:计算不同客户端模型在特征空间或预测结果上的相似度(如余弦相似度),识别语义相近的客户端。 $$ \text{Similarity}(M_i, M_j) = \frac{\phi(M_i) \cdot \phi(M_j)}{\|\phi(M_i)\| \|\phi(M_j)\|} $$ 其中$\phi(\cdot)$表示模型的特征提取函数。 - **动态聚合权重**:根据相似度动态调整聚合权重,相似度高的客户端对全局模型的贡献更大。 $$ w_{i} = \frac{\exp(\text{Similarity}(M_i, M_{\text{global}}))}{\sum_j \exp(\text{Similarity}(M_j, M_{\text{global}}))} $$ - **异质模型兼容**:支持不同结构的本地模型(如CNN、RNN),通过语义对齐实现知识迁移,无需统一模型架构。 #### 2. 在个性化联邦学习中的优势 - **冷启动优化**:通过语义相似性捕捉用户-项目的高阶交互(如社交关系、隐含偏好),缓解数据稀疏性问题,提升冷启动推荐效果。 - **隐私保护**:仅共享模型语义信息(如嵌入向量),避免原始数据传输,符合联邦学习的隐私要求。 - **计算效率**:相比传统参数聚合方法(如FedAvg),减少通信开销,尤其适用于资源受限的边缘设备。 #### 3. 典型应用场景 - **推荐系统**:在联邦环境下,为不同用户提供个性化推荐(如新闻、商品),解决数据孤岛问题。 - **医疗诊断**:各医院使用不同结构的本地模型,通过FedSSA共享疾病预测的语义知识,同时保护患者隐私。 - **智能物联网**:异质设备(传感器、摄像头)协同训练,适应动态变化的边缘环境。 ```python # FedSSA聚合伪代码示例 def aggregate(models, global_model): similarities = [] for model in models: # 提取模型语义特征(如最后一层嵌入) local_embedding = extract_embedding(model) global_embedding = extract_embedding(global_model) # 计算相似度 sim = cosine_similarity(local_embedding, global_embedding) similarities.append(sim) # 归一化为权重 weights = softmax(similarities) # 加权聚合全局模型 new_global_model = weighted_sum(models, weights) return new_global_model ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值