三角函数
1. 基本定义
-
正弦函数(sin):
s i n ( θ ) = 对边 斜边 sin(θ)=\dfrac{对边}{斜边} sin(θ)=斜边对边 -
余弦函数(cos):
c o s ( θ ) = 邻边 斜边 cos(θ)=\dfrac{邻边}{斜边} cos(θ)=斜边邻边 -
正切函数(tan):
t a n ( θ ) = 对边 邻边 = s i n ( θ ) c o s ( θ ) tan(θ)=\dfrac{对边}{邻边}=\dfrac{sin(θ)}{cos(θ)} tan(θ)=邻边对边=cos(θ)sin(θ)
2. 基本关系
2.1 毕达哥拉斯恒等式
s i n 2 ( θ ) + c o s 2 ( θ ) = 1 sin^2(θ)+cos^2(θ)=1 sin2(θ)+cos2(θ)=1
这个恒等式可以从直角三角形的勾股定理推导出来。
2.2 商数关系
t a n ( θ ) = s i n ( θ ) c o s ( θ ) c o t ( θ ) = c o s ( θ ) s i n ( θ ) = 1 t a n ( θ ) tan(θ)=\dfrac{sin(θ)}{cos(θ)}\\ cot(θ)=\dfrac{cos(θ)}{sin(θ)}=\dfrac{1}{tan(θ)} tan(θ)=cos(θ)sin(θ)cot(θ)=sin(θ)cos(θ)=tan(θ)1
2.3 倒数关系
s e c ( θ ) = 1 c o s ( θ ) c s c ( θ ) = 1 s i n ( θ ) sec(θ)=\dfrac{1}{cos(θ)}\\ csc(θ)=\dfrac{1}{sin(θ)} sec(θ)=cos(θ)1csc(θ)=sin(θ)1
3. 三角函数的周期性
-
正弦函数和余弦函数:
s i n ( θ + 2 k π ) = s i n ( θ ) sin(θ+2kπ)=sin(θ) sin(θ+2kπ)=sin(θ)c o s ( θ + 2 k π ) = c o s ( θ ) cos(θ+2kπ)=cos(θ) cos(θ+2kπ)=cos(θ)
其中,k 是任意整数。
-
正切函数:
t a n ( θ + k π ) = t a n ( θ ) tan(θ+kπ)=tan(θ) tan(θ+kπ)=tan(θ)
其中,k 是任意整数。
4. 三角函数的对称性
-
正弦函数:
s i n ( − θ ) = − s i n ( θ ) sin(−θ)=−sin(θ) sin(−θ)=−sin(θ) -
余弦函数:
c o s ( − θ ) = c o s ( θ ) cos(−θ)=cos(θ) cos(−θ)=cos(θ) -
正切函数:
t a n ( − θ ) = − t a n ( θ ) tan(−θ)=−tan(θ) tan(−θ)=−tan(θ)
5. 三角函数的和差公式
-
正弦函数的和差公式:
s i n ( A ± B ) = s i n ( A ) c o s ( B ) ± c o s ( A ) s i n ( B ) sin(A±B)=sin(A)cos(B)±cos(A)sin(B) sin(A±B)=sin(A)cos(B)±cos(A)sin(B) -
余弦函数的和差公式:
c o s ( A ± B ) = c o s ( A ) c o s ( B ) ∓ s i n ( A ) s i n ( B ) cos(A±B)=cos(A)cos(B)∓sin(A)sin(B) cos(A±B)=cos(A)cos(B)∓sin(A)sin(B) -
正切函数的和差公式:
t a n ( A ± B ) = t a n ( A ) ± t a n ( B ) 1 ∓ t a n ( A ) t a n ( B ) tan(A±B)=\dfrac{tan(A)±tan(B)}{1∓tan(A)tan(B)} tan(A±B)=1∓tan(A)tan(B)tan(A)±tan(B)
6. 三角函数的倍角公式
-
正弦函数的倍角公式:
s i n ( 2 θ ) = 2 s i n ( θ ) c o s ( θ ) sin(2θ)=2sin(θ)cos(θ) sin(2θ)=2sin(θ)cos(θ) -
余弦函数的倍角公式:
c o s ( 2 θ ) = c o s 2 ( θ ) − s i n 2 ( θ ) = 2 c o s 2 ( θ ) − 1 = 1 − 2 s i n 2 ( θ ) cos(2θ)=cos^2(θ)−sin^2(θ)=2cos^2(θ)−1=1−2sin^2(θ) cos(2θ)=cos2(θ)−sin2(θ)=2cos2(θ)−1=1−2sin2(θ) -
正切函数的倍角公式:
t a n ( 2 θ ) = 2 t a n ( θ ) 1 − t a n 2 ( θ ) tan(2θ)=\dfrac{2tan(θ)}{1−tan^2(θ)} tan(2θ)=1−tan2(θ)2tan(θ)
7. 三角函数的半角公式
-
正弦函数的半角公式:
s i n ( θ 2 ) = ± 1 − c o s ( θ ) 2 sin(\dfrac{θ}{2})=±\sqrt{\dfrac{1−cos(θ)}{2}} sin(2θ)=±21−cos(θ) -
余弦函数的半角公式:
c o s ( θ 2 ) = ± 1 + c o s ( θ ) 2 cos(\dfrac{θ}{2})=±\sqrt{\dfrac{1+cos(θ)}{2}} cos(2θ)=±21+cos(θ) -
正切函数的半角公式:
t a n ( θ 2 ) = ± 1 − c o s ( θ ) 1 + c o s ( θ ) tan(\dfrac{θ}{2})=±\sqrt{\dfrac{1−cos(θ)}{1+cos(θ)}} tan(2θ)=±1+cos(θ)1−cos(θ)