人工智能的高数基础6 三角函数

三角函数

1. 基本定义

  • 正弦函数(sin)
    s i n ⁡ ( θ ) = 对边 斜边 sin⁡(θ)=\dfrac{对边}{斜边} sin(θ)=斜边对边

  • 余弦函数(cos)
    c o s ⁡ ( θ ) = 邻边 斜边 cos⁡(θ)=\dfrac{邻边}{斜边} cos(θ)=斜边邻边

  • 正切函数(tan)
    t a n ⁡ ( θ ) = 对边 邻边 = s i n ⁡ ( θ ) c o s ⁡ ( θ ) tan⁡(θ)=\dfrac{对边}{邻边}=\dfrac{sin⁡(θ)}{cos⁡(θ)} tan(θ)=邻边对边=cos(θ)sin(θ)

2. 基本关系

2.1 毕达哥拉斯恒等式

s i n ⁡ 2 ( θ ) + c o s ⁡ 2 ( θ ) = 1 sin⁡^2(θ)+cos⁡^2(θ)=1 sin2(θ)+cos2(θ)=1

这个恒等式可以从直角三角形的勾股定理推导出来。

2.2 商数关系

t a n ⁡ ( θ ) = s i n ⁡ ( θ ) c o s ⁡ ( θ ) c o t ⁡ ( θ ) = c o s ⁡ ( θ ) s i n ⁡ ( θ ) = 1 t a n ⁡ ( θ ) tan⁡(θ)=\dfrac{sin⁡(θ)}{cos⁡(θ)}\\ cot⁡(θ)=\dfrac{cos⁡(θ)}{sin⁡(θ)}=\dfrac{1}{tan⁡(θ)} tan(θ)=cos(θ)sin(θ)cot(θ)=sin(θ)cos(θ)=tan(θ)1

2.3 倒数关系

s e c ⁡ ( θ ) = 1 c o s ⁡ ( θ ) c s c ⁡ ( θ ) = 1 s i n ⁡ ( θ ) sec⁡(θ)=\dfrac{1}{cos⁡(θ)}\\ csc⁡(θ)=\dfrac{1}{sin⁡(θ)} sec(θ)=cos(θ)1csc(θ)=sin(θ)1

3. 三角函数的周期性

  • 正弦函数和余弦函数
    s i n ⁡ ( θ + 2 k π ) = s i n ⁡ ( θ ) sin⁡(θ+2kπ)=sin⁡(θ) sin(θ+2)=sin(θ)

    c o s ⁡ ( θ + 2 k π ) = c o s ⁡ ( θ ) cos⁡(θ+2kπ)=cos⁡(θ) cos(θ+2)=cos(θ)

    其中,k 是任意整数。

  • 正切函数
    t a n ⁡ ( θ + k π ) = t a n ⁡ ( θ ) tan⁡(θ+kπ)=tan⁡(θ) tan(θ+)=tan(θ)
    其中,k 是任意整数。

4. 三角函数的对称性

  • 正弦函数
    s i n ⁡ ( − θ ) = − s i n ⁡ ( θ ) sin⁡(−θ)=−sin⁡(θ) sin(θ)=sin(θ)

  • 余弦函数
    c o s ⁡ ( − θ ) = c o s ⁡ ( θ ) cos⁡(−θ)=cos⁡(θ) cos(θ)=cos(θ)

  • 正切函数
    t a n ⁡ ( − θ ) = − t a n ⁡ ( θ ) tan⁡(−θ)=−tan⁡(θ) tan(θ)=tan(θ)

5. 三角函数的和差公式

  • 正弦函数的和差公式
    s i n ⁡ ( A ± B ) = s i n ⁡ ( A ) c o s ⁡ ( B ) ± c o s ⁡ ( A ) s i n ⁡ ( B ) sin⁡(A±B)=sin⁡(A)cos⁡(B)±cos⁡(A)sin⁡(B) sin(A±B)=sin(A)cos(B)±cos(A)sin(B)

  • 余弦函数的和差公式
    c o s ⁡ ( A ± B ) = c o s ⁡ ( A ) c o s ⁡ ( B ) ∓ s i n ⁡ ( A ) s i n ⁡ ( B ) cos⁡(A±B)=cos⁡(A)cos⁡(B)∓sin⁡(A)sin⁡(B) cos(A±B)=cos(A)cos(B)sin(A)sin(B)

  • 正切函数的和差公式
    t a n ⁡ ( A ± B ) = t a n ⁡ ( A ) ± t a n ⁡ ( B ) 1 ∓ t a n ⁡ ( A ) t a n ⁡ ( B ) tan⁡(A±B)=\dfrac{tan⁡(A)±tan⁡(B)}{1∓tan⁡(A)tan⁡(B)} tan(A±B)=1tan(A)tan(B)tan(A)±tan(B)

6. 三角函数的倍角公式

  • 正弦函数的倍角公式
    s i n ⁡ ( 2 θ ) = 2 s i n ⁡ ( θ ) c o s ⁡ ( θ ) sin⁡(2θ)=2sin⁡(θ)cos⁡(θ) sin(2θ)=2sin(θ)cos(θ)

  • 余弦函数的倍角公式
    c o s ⁡ ( 2 θ ) = c o s ⁡ 2 ( θ ) − s i n ⁡ 2 ( θ ) = 2 c o s ⁡ 2 ( θ ) − 1 = 1 − 2 s i n ⁡ 2 ( θ ) cos⁡(2θ)=cos⁡^2(θ)−sin⁡^2(θ)=2cos⁡^2(θ)−1=1−2sin⁡^2(θ) cos(2θ)=cos2(θ)sin2(θ)=2cos2(θ)1=12sin2(θ)

  • 正切函数的倍角公式
    t a n ⁡ ( 2 θ ) = 2 t a n ⁡ ( θ ) 1 − t a n ⁡ 2 ( θ ) tan⁡(2θ)=\dfrac{2tan⁡(θ)}{1−tan⁡^2(θ)} tan(2θ)=1tan2(θ)2tan(θ)

7. 三角函数的半角公式

  • 正弦函数的半角公式
    s i n ⁡ ( θ 2 ) = ± 1 − c o s ⁡ ( θ ) 2 sin⁡(\dfrac{θ}{2})=±\sqrt{\dfrac{1−cos⁡(θ)}{2}} sin(2θ)=±21cos(θ)

  • 余弦函数的半角公式
    c o s ⁡ ( θ 2 ) = ± 1 + c o s ⁡ ( θ ) 2 cos⁡(\dfrac{θ}{2})=±\sqrt{\dfrac{1+cos⁡(θ)}{2}} cos(2θ)=±21+cos(θ)

  • 正切函数的半角公式
    t a n ⁡ ( θ 2 ) = ± 1 − c o s ⁡ ( θ ) 1 + c o s ⁡ ( θ ) tan⁡(\dfrac{θ}{2})=±\sqrt{\dfrac{1−cos⁡(θ)}{1+cos⁡(θ)}} tan(2θ)=±1+cos(θ)1cos(θ)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值