计算机视觉是人工智能的一个子领域,涉及数字图像理解,如对照片和视频的理解。在深入学习计算机视觉的技术之前,需要先了解计算机视觉的基础知识,包括经典技术、理论、常用API等。这篇文章将介绍有关计算机视觉的五本顶级教材。
计算机视觉:算法与应用
本书由Richard Szeliski撰写,于2010年出版。这本书为计算机视觉技术的初学者提供了坚实的基础,可以解决各种层次的计算机视觉问题,是一本不可多得的入门书籍。
计算机视觉:模型,学习和推理
本书由Simon Prince编写,于2012年出版。这是一本很棒的入门书,涵盖了广泛的计算机视觉技术和问题。本书画了大量时间来介绍计算机视觉,并侧重于概率建模相关的基础主题上。
计算机视觉:现代方法
本书由David Forsyth和Jean Ponce撰写,并于2011年出版。这是一本关于计算机视觉的入门教材,比许多其他教科书中涵盖的主题更为广泛。由于广泛的原因,它可能阅读起来更具挑战性,不太适合初学者。
三维计算机视觉的入门技术
本书由Emanuele Trucco和Alessandro Verri编写,于1998年出版。这是一本较旧的书,侧重于计算机视觉中的3D问题相关技术。这是一个很好的起点,适用于初学者。
计算机视觉中的多视图几何
本书由Richard Hartley和Andrew Zisserman编写,于2004年出版。它是计算机视觉中相当高级的书,特别是书中讲解的多个图像推断几何的问题和解决方法。阅读起来相对困难些。