[HDU] 3549 Flow Problem [最大流][Dinic][读取优化]

Problem Description
Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.

Input
The first line of input contains an integer T, denoting the number of test cases.
For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)

Output
For each test cases, you should output the maximum flow from source 1 to sink N.

Sample Input
2
3 2
1 2 1
2 3 1
3 3
1 2 1
2 3 1
1 3 1

Sample Output
Case 1: 1
Case 2: 2

link

题解

使用Dinic的复杂度是 O(E×V^2)

发现对其进行读取优化,效率立马提升3倍,可见读取优化对竞赛的重要性

这里写图片描述

#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<algorithm>
#define INF 0x3f3f3f3f
#define MAX_V 20
using namespace std;
typedef long long LL;

const int MAXS = 5*1024*1024;
char buf[MAXS],bufout[MAXS],*ch,*chout;

void read(int &x){
    for(++ch;*ch<=32;++ch);
    for(x=0;*ch>='0';++ch) x=x*10+*ch-'0';
}

void out(int x){
    if(!x) *(++chout)='0';
    else{
        char *ch0=chout,*ch1=chout+1;
        while(x){
            *(++ch0)=x%10+'0';
            x/=10;
        }
        chout=ch0;
        while(ch1<=ch0) swap(*(ch1++),*(ch0--));
    }
    *(++chout)='\n';
}

void std_init(){
    ch=buf-1;
    chout=bufout-1;
    fread(buf,1,MAXS,stdin);
}

void std_out(){
    fwrite(bufout,1,chout-bufout+1,stdout);
}

/*---------------------------------------------------------------*/
struct edge{int to,cap,rev;};

vector<edge> G[MAX_V];
int lever[MAX_V];
int iter[MAX_V];

void add_edge(int x,int y,int cost){
    G[x].push_back((edge){y,cost,G[y].size()});
    G[y].push_back((edge){x,0,G[x].size()-1});
}
void del_graph(int N){for(int i=1;i<=N;i++) while(!G[i].empty()) G[i].pop_back();}

void bfs(int s){
    memset(lever,-1,sizeof(lever));
    queue<int> que;
    lever[s]=0;
    que.push(s);
    while(!que.empty()){
        int v=que.front();que.pop();
        for(int i=0;i<G[v].size();i++){
            edge &e=G[v][i];
            if(lever[e.to]<0&&e.cap>0){
                lever[e.to]=lever[v]+1;
                que.push(e.to);
            }
        }
    }
}

int dfs(int v,int t,int f){
    if(v==t) return f;
    for(int &i=iter[v];i<G[v].size();i++){
        edge &e=G[v][i];
        if(e.cap>0&&lever[v]<lever[e.to]){
            int d=dfs(e.to,t,min(f,e.cap));
            if(d>0){
                e.cap-=d;
                G[e.to][e.rev].cap+=d;
                return d;
            }
        }
    }
    return 0;
}

int max_flow(int s,int t){
    int flow=0,f;
    while(true){
        bfs(s);
        if(lever[t]<0) return flow;
        memset(iter,0,sizeof(iter));
        while(f=dfs(s,t,INF)) flow+=f;
    }
}

int main()
{
    std_init();
    int T,N,M;
    read(T);
    for(int t=1;t<=T;t++){
        read(N);read(M);
        int from,to,cost;
        for(int i=0;i<M;i++){
            read(from);read(to);read(cost);
            add_edge(from,to,cost);
        }
        printf("Case %d: %d\n",t,max_flow(1,N));
        del_graph(N);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值