Flow Problem
Time Limit: 5000/5000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 12625 Accepted Submission(s): 6004
Problem Description
Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.
Input
The first line of input contains an integer T, denoting the number of test cases.
For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
Output
For each test cases, you should output the maximum flow from source 1 to sink N.
Sample Input
2 3 2 1 2 1 2 3 1 3 3 1 2 1 2 3 1 1 3 1
Sample Output
Case 1: 1 Case 2: 2
Author
HyperHexagon
Source
题意:n个点,m条有向边,每条边有一个容量c;求1到n的最大流。
分析:这是一题很基础,很经典的最大流问题,算的上是PFS算法的模板题。
Ps:网络流学习
<span style="font-size:18px;">#include <iostream>
#include <cstdio>
#include <cstring>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <cmath>
#include <algorithm>
using namespace std;
const double eps = 1e-6;
const double pi = acos(-1.0);
const int INF = 1e9;
const int MOD = 1e9+7;
#define ll long long
#define CL(a,b) memset(a,b,sizeof(a))
#define lson (i<<1)
#define rson ((i<<1)|1)
#define N 1005
int pre[N];///保存增光路经上的点的前驱顶点
int mat[N][N];///残留网络容量
bool vis[N];
int s,t;
int n,m;
bool bfs()
{
int cur;
queue<int> Q;
CL(vis, 0);
CL(pre, 0);
vis[s] = true;
Q.push(s);
while(!Q.empty())
{
cur = Q.front();
Q.pop();
if(cur == t) return true;///如果已经到达t,表示已经找到一条增光路经,返回
for(int i=1; i<=n; i++)
{
if(!vis[i] && mat[cur][i])///只有残余容量大于0时才存在边
{
Q.push(i);
pre[i] = cur;
vis[i] = true;
}
}
}
return false;
}
int max_flow()
{
int ans = 0;
while(1)
{
if(!bfs()) return ans;///找不到增光路经表示已经是最大流,返回
int Min = INF;
for(int i=t; i!=s; i=pre[i])///通过pre[]数组查找增光路经上的边,求出残余容量的最小值
Min = min(Min, mat[pre[i]][i]);
for(int i=t; i!=s; i=pre[i])
{
mat[pre[i]][i] -= Min;
mat[i][pre[i]] += Min;
}
ans += Min;
}
}
int main()
{
int T,cas=1;
int u,v,c;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
s = 1;
t = n;
CL(mat, 0);
while(m--)
{
scanf("%d%d%d",&u,&v,&c);
mat[u][v] += c;
}
printf("Case %d: %d\n",cas++,max_flow());
}
return 0;
}
</span>