河南省多校连萌(四)

https://acm.zzuli.edu.cn/zzuliacm/contest.php?cid=1242

A
居然卡了map

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<vector>
#include<queue>
#include<map>
#include<algorithm>
using namespace std;

const int INF  = 0x3f3f3f3f;
const int MAXN = (int)5e5 + 5;
int arr[MAXN];

int main()
{
    int n;
    while(scanf("%d", &n) != EOF) {
    int cnt = 1;
    for(int i = 0; i < n; ++i) {
        scanf("%d", arr + i);
    }
    sort(arr, arr + n);
    for(int i = 1; i < n; ++i) {
        if(arr[i] == arr[i - 1]) continue;
        ++cnt;
    }
    puts(cnt > n - cnt ? "Yes" : "No");
    }
    return 0;
}

B
是个很有意思的题
最初的想法是反正是要去掉路径中最大的边,那么直接维护路径中最大边权,直接优先减去最大边权的路径距离跑Dijkstra
后来发现是不正确的,比如你从节点1出发到节点n去,现在在节点i,我们维护了路径 1 -> i 的最大边权,而有可能出现需要剪掉的最大边权在 i -> n 的路径中
所以1 和 n 为起点跑两遍最短路,在跑第二遍最短路的时候维护一下答案即可

#include<stdio.h>
#include<string.h>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;

const int INF = 0x3f3f3f3f;
const int MAXS = 60 * 1024 * 1024;
char buf[MAXS], *ch;

void read(int &x) {
    while(*ch <= 32) ++ch;
    for(x = 0; *ch >= '0'; ++ch) x = x * 10 + *ch - '0';
}

const int MAXN = (int)1e3 + 5;
struct edge{int to, cost, nxt;} E[MAXN * MAXN]; int lnk[MAXN], sz;
void add(int x, int y, int c) {
    E[sz] = {y, c, lnk[x]};
    lnk[x] = sz++;
}
int d[MAXN], dd[MAXN], MA[MAXN], n, m;

struct node{int v, val, ma;};
bool operator < (const node &x, const node &y) {
    return x.val > y.val;
}

void slove() {
    memset(d, 0x3f, sizeof(d));
    memset(MA, 0, sizeof(MA));
    d[1] = 0;
    priority_queue<node> que;
    que.push({1, 0, 0});
    while(!que.empty()) {
        node e = que.top(); que.pop();
        if(d[e.v] < e.val) continue;
        MA[e.v] = e.ma;
        for(int i = lnk[e.v]; i; i = E[i].nxt) {
            int dis = d[e.v] + E[i].cost + e.ma - max(e.ma, E[i].cost);
            if(dis < d[E[i].to]) {
                d[E[i].to] = dis;
                que.push({E[i].to, dis, max(e.ma, E[i].cost)});
            }
        }
    }
    int ans = INF;
    memset(dd, 0x3f, sizeof(dd));
    dd[n] = 0;
    que.push({n, 0, 0});
    while(!que.empty()) {
        node e = que.top(); que.pop();
        if(dd[e.v] < e.val) continue;
        ans = min(ans, e.val + e.ma + d[e.v]);
        ans = min(ans, e.val + MA[e.v] + d[e.v]);
        for(int i = lnk[e.v]; i; i = E[i].nxt) {
            int dis = dd[e.v] + E[i].cost + e.ma - max(e.ma, E[i].cost);
            if(dis < dd[E[i].to]) {
                dd[E[i].to] = dis;
                que.push({E[i].to, dis, max(e.ma, E[i].cost)});
            }
        }
    }
    if(ans == INF) puts("Impossible");
    else printf("%d\n", ans);
}


int main()
{
    fread(buf, MAXS, 1, stdin);
    ch = buf;
    int T;
    read(T);
    while(T--) {
        sz = 1;
        memset(lnk, 0, sizeof(lnk));
        read(n);
        read(m);
        for(int i = 0; i < m; ++i) {
            int x, y, c;
            read(x);
            read(y);
            read(c);
            add(x, y, c);
            add(y, x, c);
        }
    slove();
    }
    return 0;
}

C

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<vector>
#include<queue>
#include<map>
#include<algorithm>
using namespace std;

const int INF  = 0x3f3f3f3f;
const int MAXN = (int)1e3 + 5;
int arr[MAXN];

int main()
{
    int T;
    scanf("%d", &T);
    while(T--) {
    int n, m ;
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; ++i) {
        scanf("%d", arr + i);
    }
    arr[++n] = 101;
    int ans = 0;
    for(int i = 0; i <= n; ++i) {
        int low = arr[i];
        int top = i + m + 1 <= n ? arr[i + m + 1] - 1 : 100;
        ans = max(ans, top - low);
    } 
    printf("%d\n", ans);
    }
    return 0;
}

D

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<vector>
#include<queue>
#include<map>
#include<algorithm>
using namespace std;

const int INF  = 0x3f3f3f3f;
const int MAXN = (int)1e3 + 5;

int main()
{
    int n;
    while(scanf("%d", &n) != EOF) {
        int cnt2 = 0, cnt4 = 0, cnt0 = 0;
        for(int i = 0; i < n; ++i) {
            int x;
            scanf("%d", &x);
            if(x % 4 == 0) ++cnt4;
            else if(x % 2 == 0) ++cnt2;
            else ++cnt0;
        }
        puts(cnt4 >= cnt0 || (cnt2 == 0 && cnt4 + 1 >= cnt0) ? "Pass" : "Not Pass");
    }
    return 0;
}

E
这就是高中的等比数列求和,只是是在模意义下的,会模逆元就能AC了

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<vector>
#include<queue>
#include<map>
#include<algorithm>
using namespace std;

const int INF  = 0x3f3f3f3f;
const int MAXN = (int)1e3 + 5;
const int MOD = (int)1e9 + 7;

int modpow(int a, int n) {
    int res = 1;
    while(n) {
    if(n&1) res = 1LL * res * a % MOD;
        a = 1LL * a * a % MOD;
        n >>= 1;
    }
    return res;
}

int main()
{
    int k, n, t = 0;
    while(scanf("%d%d", &k, &n) != EOF) {
        if(k == 1) {
            printf("Case %d: %d\n", ++t, n + 1);
            continue;
        }
        int ans = 1LL * (modpow(k, n + 1) - 1) % MOD * modpow(k - 1, MOD - 2) % MOD;
        printf("Case %d: %d\n", ++t, ans);
    }
    return 0;
}

F
n! 因子2 的个数

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<vector>
#include<queue>
#include<map>
#include<algorithm>
using namespace std;

const int INF  = 0x3f3f3f3f;
const int MAXN = (int)1e3 + 5;

int main()
{
    int T;
    scanf("%d", &T);
    while(T--) {
        int n;
        scanf("%d", &n);
        int ans = 0, t = 1;
        while(n) {
            n /= 2;
            ans += n;
        }
        printf("%d\n", ans);
    }
    return 0;
}

H
一个很重要的条件就是两个子序列长度为 n/2,可以利用这个条件加一个很强的剪枝,也就是说每个数值都要利用,那么用 vis[] 记录是否用过,第一个序列的下一个元素是之后没有用过的的第一个,然后再枚举第二个序列的下一个元素。

#pragma GCC optimize ("O2")
#include<stdio.h>
#include<string.h>

int n, arr[50], vis[50], flag;

void dfs(int p1, int p2, int cnt) {
    if(flag || cnt == n) {
        flag = 1;
        return ;
    }
    int i = p1, j = p2;
    for(; i <= n; ++i) if(!vis[i]) break;
    if(i == n + 1) return ;
    vis[i] = 1;
    for(; j <= n; ++j) if(!vis[j] && arr[i] == arr[j]) {
        vis[j] = 1;
        dfs(i + 1, j + 1, cnt + 2);
        vis[j] = 0;
    }
    vis[i] = 0;
}

int main()
{
    int T;
    while(scanf("%d", &T) !=EOF  && T) {
        while(T--) {
            memset(vis, 0, sizeof(vis));
            flag = 0;
            scanf("%d", &n);
            for(int i = 1; i <= n; ++i) {
                scanf("%d", arr + i);
            }
            dfs(1, 1, 0);
            printf(flag ? "竟然还有这种操作\n" : "没有这种操作\n");
        }
    }
    return 0;
}

I
二元函数 f(x,y)=ax+by(x,yZ) 的值域为 {kgcd(a,b)|kZ}
ax+by 要组成任何数,那么 gcd(a,b)1

下面是官方题解了:
每个都可以到达k的倍数,则
k*x-(2*n-2)*y=C (1<=C<=2*n-2)
必须有解,既gcd(k,2*n-2)==1

#include<stdio.h>

int gcd(int a, int b) {
    return b ? gcd(b, a % b) : a;
}

int main()
{
    int n, k;
    while(scanf("%d%d", &n, &k) != EOF)
        puts(gcd(2 * n - 2, k) != 1 ? "Yes" : "No");
    return 0;
}

后面的题会了再补上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值