29、3D 场景合成:MiDaS、NeRF 与 3D 高斯散点渲染技术

3D 场景合成:MiDaS、NeRF 与 3D 高斯散点渲染技术

在当今科技飞速发展的时代,计算机视觉领域取得了显著的进步,尤其是在 3D 场景合成方面。本文将深入探讨几种关键技术,包括使用 MiDaS 进行图像深度估计、利用神经辐射场(NeRF)合成 3D 场景,以及 3D 高斯散点渲染技术,为你揭示这些技术的原理、应用和操作方法。

1. 图像深度估计技术概述

图像深度估计是计算机视觉中的一项基础任务,它使机器能够从 2D 图像或视频帧中感知场景的 3D 结构。传统上,深度估计严重依赖昂贵的硬件,如立体相机。然而,机器学习的出现彻底改变了这一领域,近年来研究人员发明了许多图像深度估计技术。

1.1 基于机器学习的深度估计方法

  • MiDaS :这是一种使用监督学习的技术,其模型在 10 个不同的数据集上进行了训练,采用多目标优化确保在广泛输入上的高质量表现。
  • DINOv2 :Facebook 的 DINOv2 模型利用自监督视觉变换器,可用于图像分类、实例检索、视频理解、语义分割和深度估计。

1.2 简单的人脸距离测量项目

在使用复杂的 AI 模型之前,我们可以通过一个简单的项目来测量人脸与笔记本电脑摄像头之间的距离。这个项目使用了 OpenCV、cvzone 和 mediapipe 库,还需要一个钥匙链卷尺进行校准。

1.2.1 原理

将笔记本电脑摄像头视为一个焦距为 (f) 的薄透镜。通常,(f) 的值约为几毫米,而人脸到摄像头的物距 (u)

基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕基于序贯蒙特卡洛模拟法的配电网可靠性评估展开研究,重介绍了利用Matlab代码实现该方法的技术路径。文中详细阐述了序贯蒙特卡洛模拟的基本原理及其在配电网可靠性分析中的应用,包括系统状态抽样、时序模拟、故障判断修复过程等核心环节。通过构建典型配电网模型,结合元件故障率、修复时间等参数进行大量仿真,获取系统可靠性指标如停电频率、停电持续时间等,进而评估不同运行条件或规划方案下的配电网可靠性水平。研究还可能涉及对含分布式电源、储能等新型元件的复杂配电网的适应性分析,展示了该方法在现代电力系统评估中的实用性扩展性。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事电网规划运行的技术工程师。; 使用场景及目标:①用于教学科研中理解蒙特卡洛模拟在电力系统可靠性评估中的具体实现;②为实际配电网的可靠性优化设计、设备配置运维策略制定提供仿真工具支持;③支撑学术论文复现算法改进研究; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法流程,重关注状态转移逻辑时间序列模拟的实现细节,并尝试在IEEE标准测试系统上进行验证扩展实验,以深化对方法机理的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值