数据分析-------统计学-----基本概念

本文介绍了统计学中样本和总体的概念,包括样本和总体均值,强调了方差在衡量数据离散程度中的作用。讨论了样本方差可能存在的误差,并提出了无偏样本方差的概念。接着,文章讲解了随机变量,分为离散型和连续型,通过实例说明其特点,并探讨了概率密度函数在连续型随机变量中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、样本和总体

符号表示:

μ代表总体均值

x拔代表样本均值

注意:均值不一定能很好地表示数据,虽然它是衡量数据集中趋势的一种方式,但并不能很好的表示所有数据。如下图所示,虽然两个总体的均值都是2.5,但是第一个总体的数据都是接近2.5,而第二个总体的数据却都是远离2.5的。

为了解决上述问题,可以采用方差来描述。

总体方差:σ²代表方差     σ²=∑(x-均值)²/所有总体数据个数

样本方差:s²=Σ(x-均值)²/样本(取样出来的)数据个数。

但是有时候样本方差可能会造成一个问题。当选的样本都远离总体的均值,那么根据样本点得到的方差即使小,也不满足实际的需要,无法根据样本推测总体。也就是说,用上面计算方差的公式有可能会导致误差,低估总体方差。

有一个更好的公式叫做总体方差的无偏估计或者叫无偏样本方差。公式如下:

S²=s²=Σ(x-均值)²/样本(取样出来的)数据个数-1

二、随机变量

随机变量分为离散型随机变量和连续型随机变量

离散型随机变量举例如下:              

明天是否会下雨用X表示:X={1,下雨࿱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值