坑人的题目总是能够卡在这三四个小时。
题目大意:
水面上有一些石块,两只青蛙各站在一个石块上,现在一直青蛙想跳到另一只青蛙所在的石块上,有很多中跳跃方案,每种跳跃路线都会有一个最大跳跃距离,求这些最大跳跃距离的最小值。。
解题思路:
从起点出发,每次都跳到所在位置最近的石块上(当然,跳到的石块之前没有访问过),那么在最大跳跃距离的最小值一定在这条路线中,且是这条路线中最长的那段跳跃距离。
代码:
#include<cstdio>
#include<cstring>
#include<cmath>
#define M 205
#define Max 999999999
int n,a[M][M],dis[M]; //dis[i]表示从其实位置到第i个点的跳跃路线中的最大跳跃距离
int x[M],y[M],vis[M];
int min=Max;
int max(int a,int b){
return a>b ? a:b;
}
void dijkstra(){
int i,j,m;
for(i=0;i<n;i++){
dis[i]=a[0][i];
vis[i]=0;
}
vis[0]=1;
for(j=1;j<n;j++){
m=-1;
min=Max;
for(i=1;i<n;i++){
if(vis[i]==0 && dis[i]<min){
m=i;min=dis[i];
}
}
if(m==-1) return ;
vis[m]=1;
if(vis[1]==1) return ;
for(i=0;i<n;i++){
if(vis[i]==0 && dis[i]>max(dis[m],a[m][i])){
dis[i]=max(dis[m],a[m][i]); //当跳到一个点时,下一跳必须往最短跳跃距离的点上跳,
}
}
}
}
int main(){
int th=1;
while(~scanf("%d",&n)){
if(n==0) break;
for(int i=0;i<n;i++) scanf("%d%d",&x[i],&y[i]);
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
a[i][j]=(x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]);
}
}
dijkstra();
for(int i=0;i<n;i++) printf("%d ",dis[i]);
printf("\n");
printf("Scenario #%d\n",th++);
printf("Frog Distance = %.3f\n\n",sqrt(dis[1]*1.0));
//printf("Frog Distance = %.3f\n\n",sqrt(dis[1]*1.0)); 以%lf输出是错误的,可为什么?
}
return 0;
}