什么是向量
向量是指具有大小和方向的量。它可以形象化地表示为带箭头的线段
箭头所指:代表向量的方向
线段长度:代表向量的大小
向量是线性代数中最基础、最根源的组成部分,向量加法和向量乘法贯穿线性代数始终,起着很重要的作用
基向量
也可以说是单位向量,其他向量都可以由基向量进行缩放、合成得到
比如在一维坐标系,基向量是
i
⃗
\vec{i}
i
u
⃗
\vec{u}
u就可以表示为3
i
⃗
\vec{i}
i,
v
⃗
\vec{v}
v表示为-2
i
⃗
\vec{i}
i
在二维向量中,比如
p
⃗
\vec{p}
p(3,2) =>3*(
i
⃗
\vec{i}
i,0)+(-2)*(0,
j
⃗
\vec{j}
j)
向量数乘
k*(x,y,z) = (kx,ky,kz)
其实就是对向量个轴上的分量进行等比缩放
向量的加法
可以从力学角度看,F1和F2的合力
在X轴上的合力FX = 1 + 3 = 4
在Y轴上的合力FY = 2 + (-1) = 1
最后在将FX和FY进行合成得到F = (4,1)
向量点乘
这里慢慢变得有意思了……
先来一个二维向量
在基向量
i
⃗
\vec{i}
i、
j
⃗
\vec{j}
j构成的二维坐标系下,向量
p
⃗
\vec{p}
p可以表示为:
p
⃗
\vec{p}
p = 3*(
i
⃗
\vec{i}
i,0) + 2*(0,
j
⃗
\vec{j}
j)
但是如果在其他基向量构成的坐标系中,
p
⃗
\vec{p}
p应该如何表示?
先来看看
p
⃗
\vec{p}
p在
i
⃗
\vec{i}
i所在轴上的表示,前面说过,任何向量都可以看做基向量缩放再合成的结果,所以我们只需要变换基向量即可
(0,
j
⃗
\vec{j}
j)在水平轴上的表示为(0,0)
(
i
⃗
\vec{i}
i,0)在水平轴上的表示为(
i
⃗
\vec{i}
i,0)
在水平轴上
p
2
⃗
\vec{p2}
p2表示为: 3*(
i
⃗
\vec{i}
i,0) + 2*(0,0) = (3
i
⃗
\vec{i}
i,0),由于这里只有一个轴,后面的分量其实是没意义的,所以可以写成3
i
⃗
\vec{i}
i
接下来试着将
p
⃗
\vec{p}
p表示在L轴上,
u
⃗
\vec{u}
u是在L轴上的单位向量
将(
i
⃗
\vec{i}
i,0),(0,
j
⃗
\vec{j}
j) 转换到L轴后变成了
i
2
⃗
\vec{i2}
i2、
j
2
⃗
\vec{j2}
j2,那么
p
2
⃗
\vec{p2}
p2 = 3*
i
2
⃗
\vec{i2}
i2 + 2*
j
2
⃗
\vec{j2}
j2
那
i
2
⃗
\vec{i2}
i2、
j
2
⃗
\vec{j2}
j2怎么表示呢?它们跟基向量
u
⃗
\vec{u}
u有什么关系?
根据对偶性,可以看出
i
⃗
\vec{i}
i在
u
⃗
\vec{u}
u上的投影长度和
u
⃗
\vec{u}
u在
i
⃗
\vec{i}
i上的投影长度相等,那么上面的
i
2
⃗
\vec{i2}
i2 =
u
x
u_x
ux
u
⃗
\vec{u}
u,同理
j
2
⃗
\vec{j2}
j2 =
u
y
u_y
uy
u
⃗
\vec{u}
u
这里的
u
⃗
\vec{u}
u是单位向量,那对于非单位向量呢,比如
k
u
⃗
\vec{ku}
ku =
k
⋅
u
⃗
k\cdot\vec{u}
k⋅u,它在
i
⃗
\vec{i}
i、
j
⃗
\vec{j}
j上的投影是怎样的?
k
u
⃗
\vec{ku}
ku对
u
⃗
\vec{u}
u缩放了
k
k
k倍,对偶性被打破了
i
⃗
\vec{i}
i在
k
u
⃗
\vec{ku}
ku上的投影长度并没有改变,
i
⃗
⋅
k
u
⃗
\vec{i}\cdot\vec{ku}
i⋅ku =
k
(
i
⃗
⋅
u
⃗
)
k(\vec{i}\cdot\vec{u})
k(i⋅u)
图中可以看出
k
u
⃗
\vec{ku}
ku在
i
⃗
\vec{i}
i上的投影长度被缩放了
k
k
k倍
k
u
⃗
⋅
i
⃗
\vec{ku}\cdot\vec{i}
ku⋅i =
k
(
u
⃗
⋅
i
⃗
)
k(\vec{u}\cdot\vec{i})
k(u⋅i)
可见,对于非单位向量,彼此的投影仍然保持一致
所以无论
u
⃗
\vec{u}
u是不是单位向量,
i
⃗
\vec{i}
i、
j
⃗
\vec{j}
j在
u
⃗
\vec{u}
u上的投影长度都为
u
x
、
u
y
u_x、u_y
ux、uy
所以:
p
2
⃗
\vec{p2}
p2 =
p
x
⋅
i
2
⃗
p_x\cdot\vec{i2}
px⋅i2 +
p
y
⋅
j
2
⃗
p_y\cdot\vec{j2}
py⋅j2
=
p
x
u
x
p_xu_x
pxux
u
⃗
\vec{u}
u +
p
y
u
y
p_yu_y
pyuy
u
⃗
\vec{u}
u
= (
p
x
u
x
+
p
y
u
y
p_xu_x+p_yu_y
pxux+pyuy)*
u
⃗
\vec{u}
u
=
p
x
u
x
+
p
y
u
y
p_xu_x+p_yu_y
pxux+pyuy (一个轴上的向量可直接用数值表示,数值绝对值表示向量长度,正负表示方向)
到此,我们得到了一个非常重要的结论:
向量
p
⃗
\vec{p}
p在向量
u
⃗
\vec{u}
u上的表示为
p
x
p_x
px
u
x
u_x
ux +
p
y
p_y
py
u
y
u_y
uy
根据对偶性,向量
u
⃗
\vec{u}
u在向量
p
⃗
\vec{p}
p上的表示也为
p
x
p_x
px
u
x
u_x
ux +
p
y
p_y
py
u
y
u_y
uy
咦,这不是向量点乘公式吗?并且满足交换律!
继续看,是不是觉得这个公式有点眼熟……
矩阵乘法:
[
a
b
]
[\begin{matrix} a\\ b \end{matrix}]
[ab]
⋅
\cdot
⋅
[
c
d
]
\begin{matrix} [c&d] \end{matrix}
[cd] =
a
c
+
b
d
ac+bd
ac+bd
如果将
p
⃗
\vec{p}
p写成列式
[
p
x
p
y
]
[\begin{matrix} p_x \\ p_y \end{matrix}]
[pxpy],
u
⃗
\vec{u}
u写成行式
[
u
x
u
y
]
\begin{matrix} [u_x&u_y] \end{matrix}
[uxuy],
p
⃗
⋅
u
⃗
\vec{p}\cdot\vec{u}
p⋅u就可以看做是矩阵乘法
p
⃗
⋅
u
⃗
\vec{p}\cdot\vec{u}
p⋅u =
[
p
x
p
y
]
[\begin{matrix} p_x \\ p_y \end{matrix}]
[pxpy]
⋅
\cdot
⋅
[
u
x
u
y
]
\begin{matrix} [u_x&u_y] \end{matrix}
[uxuy] =
p
x
p_x
px
u
x
u_x
ux +
p
y
p_y
py
u
y
u_y
uy
看到这里,我们是否可以理解为:向量的点乘,其实就是将一个向量变换到另一个向量所在的坐标空间中
如下图:二维空间中的点,经过单位向量
u
⃗
\vec{u}
u变换后,在
u
⃗
\vec{u}
u所在轴上都能得到与之对应的值,这个过程我们可以看做是二维空间到一维空间的投射
a
⃗
⋅
b
⃗
=
∣
a
⃗
∣
∣
b
⃗
∣
c
o
s
(
φ
)
\vec{a} \cdot \vec{b}= |\vec{a}||\vec{b}|cos(\varphi)
a⋅b=∣a∣∣b∣cos(φ)
这个公式又是怎么得到的?
先复习下余弦定理:
∣
a
⃗
∣
2
|{\vec{a}}|^2
∣a∣2 =
∣
c
⃗
∣
2
|{\vec{c}}|^2
∣c∣2 +
∣
b
⃗
∣
2
|{\vec{b}}|^2
∣b∣2
=
(
∣
c
⃗
∣
s
i
n
(
A
)
)
2
(|{\vec{c}}|sin(A))^2
(∣c∣sin(A))2 +
(
(
∣
b
⃗
∣
−
∣
c
⃗
∣
c
o
s
(
A
)
)
2
)
((|{\vec{b}}| - |{\vec{c}}|cos(A)) ^2)
((∣b∣−∣c∣cos(A))2)
=
∣
c
⃗
∣
2
|{\vec{c}}|^2
∣c∣2
s
i
n
(
A
)
2
sin(A)^2
sin(A)2 +
∣
b
⃗
∣
2
|{\vec{b}}|^2
∣b∣2 +
∣
c
⃗
∣
2
|{\vec{c}}|^2
∣c∣2
c
o
s
(
A
)
2
cos(A)^2
cos(A)2 -
2
∣
c
⃗
∣
∣
b
⃗
∣
c
o
s
(
A
)
2|{\vec{c}}||{\vec{b}}|cos(A)
2∣c∣∣b∣cos(A)
=
∣
c
⃗
∣
2
|{\vec{c}}|^2
∣c∣2(
s
i
n
(
A
)
2
sin(A)^2
sin(A)2 +
c
o
s
(
A
)
2
cos(A)^2
cos(A)2) +
∣
b
⃗
∣
2
|{\vec{b}}|^2
∣b∣2 -
2
∣
c
⃗
∣
∣
b
⃗
∣
c
o
s
(
A
)
2|{\vec{c}}||{\vec{b}}|cos(A)
2∣c∣∣b∣cos(A)
=
∣
c
⃗
∣
2
|{\vec{c}}|^2
∣c∣2 +
∣
b
⃗
∣
2
|{\vec{b}}|^2
∣b∣2 -
2
∣
c
⃗
∣
∣
b
⃗
∣
c
o
s
(
A
)
2|{\vec{c}}||{\vec{b}}|cos(A)
2∣c∣∣b∣cos(A)
按照上面的推导:
2
∣
c
⃗
∣
∣
b
⃗
∣
c
o
s
(
A
)
2|{\vec{c}}||{\vec{b}}|cos(A)
2∣c∣∣b∣cos(A) =
∣
c
⃗
∣
2
|{\vec{c}}|^2
∣c∣2 +
∣
b
⃗
∣
2
|{\vec{b}}|^2
∣b∣2 -
∣
a
⃗
∣
2
|{\vec{a}}|^2
∣a∣2
=
B
x
2
B_x^2
Bx2 +
B
y
2
B_y^2
By2 +
C
x
2
C_x^2
Cx2 +
C
y
2
C_y^2
Cy2 -
(
C
x
−
B
x
)
2
(C_x-B_x)^2
(Cx−Bx)2 -
(
C
y
−
B
y
)
2
(C_y-B_y)^2
(Cy−By)2
=
B
x
2
B_x^2
Bx2 +
B
y
2
B_y^2
By2 +
C
x
2
C_x^2
Cx2 +
C
y
2
C_y^2
Cy2 -
C
x
2
C_x^2
Cx2 -
B
x
2
B_x^2
Bx2 +
2
C
x
B
x
2C_xB_x
2CxBx -
C
y
2
C_y^2
Cy2 -
B
y
2
B_y^2
By2 +
2
C
y
B
y
2C_yB_y
2CyBy
= 2(
C
x
B
x
C_xB_x
CxBx+
C
y
B
y
C_yB_y
CyBy)
得到:
∣
c
⃗
∣
∣
b
⃗
∣
C
o
s
(
A
)
|{\vec{c}}||{\vec{b}}|Cos(A)
∣c∣∣b∣Cos(A) =
C
x
B
x
C_xB_x
CxBx+
C
y
B
y
C_yB_y
CyBy
所以:
a
⃗
⋅
b
⃗
\vec{a} \cdot \vec{b}
a⋅b =
a
x
b
x
+
a
y
b
y
a_xb_x+a_yb_y
axbx+ayby =
∣
a
⃗
∣
∣
b
⃗
∣
c
o
s
(
φ
)
|\vec{a}||\vec{b}|cos(\varphi)
∣a∣∣b∣cos(φ),
φ
\varphi
φ是
a
⃗
b
⃗
\vec{a}\vec{b}
ab夹角
根据点乘的结果来判断两个向量的方向关系:
大于 0:0 =<
φ
\varphi
φ <
p
i
/
2
pi/2
pi/2
等于 0:
φ
\varphi
φ =
p
i
/
2
pi/2
pi/2,两向量垂直
小于 0:
p
i
/
2
pi/2
pi/2 <
φ
\varphi
φ =<
p
i
pi
pi
从力学角度,是否还可以理解为力F在位移S上做的功?
W =
∣
F
⃗
∣
∣
S
⃗
∣
c
o
s
(
φ
)
|\vec{F}||\vec{S}|cos(\varphi)
∣F∣∣S∣cos(φ)
参考:https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw