矩阵与线性变换

需要先阅读 线性代数-向量,才能更好的理解下文

向量 ∣ x y ∣ |\begin{matrix} x \\ y \end{matrix}| xy,经过矩阵 ∣ a b c d ∣ |\begin{matrix} a & b \\ c & d \end{matrix}| acbd变换后,变成了什么?
我们知道矩阵乘法公式:
∣ a b c d ∣ ∣ x y ∣ = ∣ a x + b x c y + d y ∣ |\begin{matrix} a & b \\ c & d \end{matrix}||\begin{matrix} x \\ y \end{matrix}|= |\begin{matrix} ax+bx \\ cy+dy \end{matrix}| acbdxy=ax+bxcy+dy
怎么解释?
在这里插入图片描述
如果将
∣ a c ∣ |\begin{matrix} a \\ c \end{matrix}| ac 看作是基向量 i ⃗ \vec{i} i 变化后的结果
∣ b d ∣ |\begin{matrix} b \\ d \end{matrix}| bd 看作是基向量 j ⃗ \vec{j} j 变化后的结果
那么对于向量 ∣ x y ∣ |\begin{matrix} x \\ y \end{matrix}| xy,变换后就是 x ∣ a c ∣ + y ∣ b d ∣ = ∣ a x + b x c y + d y ∣ x|\begin{matrix} a \\ c \end{matrix}| + y|\begin{matrix} b \\ d \end{matrix}| = |\begin{matrix} ax+bx \\ cy+dy \end{matrix}| xac+ybd=ax+bxcy+dy

复合变换:

在这里插入图片描述
向量经过矩阵M1变换,再经过矩阵M2变换后的结果,和直接经过M1M2的复合矩阵变换后的结果一致
这里依然通过跟踪基向量的变化过程
基向量 i ⃗ \vec{i} i 经过M1变换后变成了
∣ e g ∣ |\begin{matrix} e \\ g \end{matrix}| eg,再经过M2变换后,基向量 j ⃗ \vec{j} j 最终变换为:
在这里插入图片描述
同理:基向量 j ⃗ \vec{j} j 最终变换为:
在这里插入图片描述
对矩阵乘法的这种推导更容易让人理解
在这里插入图片描述

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值