Momenta“执行力强”的一个关键原因

编辑 | 九章衡言管理咨询

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

>>点击进入→自动驾驶之心BEV感知技术交流群

我经常被一些自动驾驶行业的朋友问到同一个问题:Momenta为什么能脱颖而出?

我每次答案都是一样的:

•老板的认知水平超高——曹旭东对技术路线的洞察力强、战略判断力+战略定力也都很强,Momenta在战略上几乎没走过弯路(在重大问题上,现在的观点跟前几年的观点是一样的);

•平台化做得比较好(我是从他们只有1200人左右就可以做那么多项目推测出来的);

•执行力非常强。

在当前的竞争环境下,有了这几个“高维优势”,“卷”“工作体验”方面的劣势就成了“矛盾的次要方面”,对公司在过去这些年的竞争力不构成实质性影响。

老板的认知能力强,这一点的个人色彩比较强,对其他公司也不具备参考价值;平台化能力,在过去几年,行业里也谈得比较多了;在本文,我主要简单谈一下Momenta“执行力强”这个话题。

今年上半年,我曾跟一位Momenta前员工聊过这个话题,他给出的答案是:曹旭东对业务的参与度比较深——

曹旭东主要是对中层抓得比较紧,但不仅是中层向他汇报,连普通的工程师也会直接向他汇报,从上到下都会向他汇报。对关键模块进展到了哪个程度了,曹旭东是很清楚的。一旦发现了问题,他就会狠抓、会抓得特别细。

曹旭东的做法,跟埃隆.马斯克在特斯拉、Space X、推特、Boring公司的做法很像。

马斯克认为,自己就是工程师,他要求自己了解到每个技术系统的方方面面。“我要参加每个会议,参与一切,从火箭设计到推特的数据库设计到其他一切。只要有可能,我会只和工程师讨论,我绝对不会跟任何不是工程师的人交谈。”

马斯克说:“我不会设置层层等级。我会穿透公司,直接和负责这件事的人讨论。”

马斯克的母亲梅耶曾旁听过一整天的SpaceX、特斯拉、X、BoringCompany的会议,她说:

工程师和员工们每个小时都会来向埃隆汇报最新进展和建议。他(埃隆)了解每一个细节,充满了热情和欢笑。

基本上,他每周都会去他的每家公司。他找出这一周这家公司的瓶颈所在,然后,他和工程师合作在当周解决这些问题。这样一来,他的公司发展速度比别人快得多,就像兔子和乌龟在赛跑。

无论是曹旭东还是马斯克,之所以要直接听取一线工程师的汇报,是因为,信息在层层传递的过程中会失真。而信息的失真,会严重影响到决策的质量。

信息的失真,既有可能是中层的“故意屏蔽”造成的,还有可能是,在信息传递中,部分员工(包括中层)的提问水平和表达能力不足造成的——无法通过高质量的问题来挖掘出很多高质量的信息、无法把自己掌握的信息准确完整地传递出去。

一个人的提问水平,表达能力,在很大程度上受制于他的认知水平——认知不到位,就无法准确地知道自己的认知盲区在哪里,因而很难提出足够多的的高质量问题;认知不到位,也就没法有把特定问题“理解透”,表达就不可能逻辑严谨、条理清晰。

而员工(中层、一线)直接向高认知的老板汇报,有一个意外的好处是:由于有了近距离向老板学习的机会,只要习惯于总结复盘,他们的认知能力就会快速提升,因而,提问水平和表达能力也会提升了。

大量中层员工的提问水平和表达能力提升了,部分一线员工的表达能力也提升了,那么,哪怕要做逐级汇报,相比于那些从来没有跟老板直接汇报过的人,信息在传递中失真的概率也会大幅度降低。

之前,在跟我聊起这个话题时,一个猎头朋友的观点是:“公司的汇报体系不应该完全遵循一个既定的框架,而应该跟着信息流动走——在做这个决策时,你需要获得来自哪几个人的信息,就应该让这几个人直接汇报给你。”

这其实就是“端到端”的汇报,而我们都知道,“端到端”最明显的优势就是“信息的无损传递”。信息传递中的损失少了,那决策质量自然就上去了。

【未尽之语】涉及跨级汇报制度时,需要注意的问题

1.这里说的仅仅是“CEO直接听取一线员工的汇报”,而不包括“CEO越过中层,直接指挥一线员工怎么干活”——这样会造成组织体系的混乱,让中层无所适从。

2.某个级别低的下属直接跨过原来的上司向更高级的领导或CEO直接汇报了,那他的直接上司的积极性会不会被挫伤?或者,他对下属的信任感下降了?

此外,会不会出现这样一种情况:某个员工跨级汇报了,这个事情,他的上级的上级的上级都知道了,但他的直接上级还不知道?

针对这个疑问,我曾问过一个前员工:“员工跨级直接向曹旭东汇报的时候,他的直接上级在场吗?”他的答案是:在的。

3.某自动驾驶公司的高管说:“本来,刚开始,我们的组织架构很扁平化,直接向我汇报的有20多个人。但后来,有的表现得好,有晋升的诉求,有的仍然原地踏步,所以,慢慢又调整到了一种金字塔式结构。”

可见,扁平化的组织架构,在实施的过程中,如何满足员工“升官”的诉求?是一个挑战。

① 2025中国国际新能源技术展会

自动驾驶之心联合主办中国国际新能源汽车技术、零部件及服务展会。展会将于2025年2月21日至24日在北京新国展二期举行,展览面积达到2万平方米,预计吸引来自世界各地的400多家参展商和2万名专业观众。作为新能源汽车领域的专业展,它将全面展示新能源汽车行业的最新成果和发展趋势,同期围绕个各关键板块举办论坛,欢迎报名参加。

496be49d60e7d19b2c6617d805e391f2.jpeg

② 国内首个自动驾驶学习社区

『自动驾驶之心知识星球』近4000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知端到端自动驾驶世界模型仿真闭环2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案大模型,更有行业动态和岗位发布!欢迎扫描加入

de3742fe2ebb3c63e1fd26322bc86292.png

 ③全网独家视频课程

端到端自动驾驶、仿真测试、自动驾驶C++、BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合多传感器标定多传感器融合多模态3D目标检测车道线检测轨迹预测在线高精地图世界模型点云3D目标检测目标跟踪Occupancy、CUDA与TensorRT模型部署大模型与自动驾驶NeRF语义分割自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习

eb823999eb9b996669dd46c2b40776bd.png

网页端官网:www.zdjszx.com

④【自动驾驶之心】全平台矩阵

8632188a9a6d9007b6c1d98e1e335f4b.png

内容概要:该论文聚焦于6G通信中20-100GHz频段的电磁场(EMF)暴露评估问题,提出了一种基于自适应可重构架构神经网络(RAWA-NN)的预测框架。该框架通过集成权重分析模块和优化模块,能够自动优化网络超参数,显著减少训练时间。模型使用70%的前臂数据进行训练,其余数据用于测试,并用腹部和股四头肌数据验证模型泛化能力。结果显示,该模型在不同参数下的相对差异(RD)在前臂低于2.6%,其他身体部位低于9.5%,可有效预测皮肤表面的温升和吸收功率密度(APD)。此外,论文还提供了详细的代码实现,涵盖数据预处理、权重分析模块、自适应优化模块、RAWA-NN模型构建及训练评估等内容。 适合人群:从事电磁兼容性研究、6G通信技术研发以及对神经网络优化感兴趣的科研人员和工程师。 使用场景及目标:①研究6G通信中高频段电磁暴露对人体的影响;②开发更高效的电磁暴露评估工具;③优化神经网络架构以提高模型训练效率和预测精度。 其他说明:论文不仅提出了理论框架,还提供了完整的代码实现,方便读者复现实验结果。此外,论文还讨论了未来的研究方向,包括扩展到更高频段(如300GHz)的数据处理、引入化学习优化超参数、以及实现多物理场耦合的智能电磁暴露评估系统。建议读者在实际应用中根据具体需求调整模型架构和参数,并结合真实数据进行验证。
内容概要:本文是北京金融科技产业联盟发布的《基于数据空间的金融数据可信流通研究报告》,探讨了金融数据可信流通的现状、挑战和发展前景。文章首先介绍了金融数据在数字化转型中的重要性及其面临的隐私保护和安全挑战。接着,文章详细阐述了数据空间的概念及其发展历程,尤其是可信数据空间(TDM)在我国的发展情况。文中还深入分析了金融数据可信流通的典型应用场景、关键技术和方案架构,如数据访问控制、数据使用控制、智能合约、数据脱敏等。最后,文章展示了多个典型场景应用案例,如中信银行总分行数据流通管控、工银金租数据流通、银联安全生物特征支付等,并总结了当前可信数据空间建设中存在的法规、技术、标准和商业模式挑战,提出了相应的政策建议。 适用人群:金融行业从业者、数据安全管理人员、政策制定者、科技研发人员等。 使用场景及目标:①理解金融数据可信流通的重要性和挑战;②学习可信数据空间的关键技术和应用场景;③探索金融数据可信流通的具体实践案例;④了解当前可信数据空间建设的瓶颈和未来发展方向。 其他说明:本文不仅提供了详尽的技术和应用分析,还提出了具体的政策建议,有助于推动金融数据可信流通的健康发展。阅读本文可以帮助读者深入了解金融数据安全保护和高效利用的最佳实践,为相关政策和技术的发展提供参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值