单变量微积分(02):Derivatives, Slope, Velocity, and Rate of Change

1. 导数的几何意义

函数 f(x) 在点 P 的导数定义为 P 点在函数曲线上的该点切线的斜率。但是如何来准确的求出曲线在该点的切线呢。

有两点要注意:

  • 切线并不是只与曲线只有一个交点的线
  • 它是曲线上另一点逐渐靠近 P 点时,形成的割线斜率的极限。

所以导数的几何定义即为:

Limit of slopes of secant lines PQ as QP ( P fixed). The slope of PQ¯¯¯¯¯ :

在我们知道了曲线的导数 f(x) 后,我们可以求得点 P(x0,y0) 处的切线方程为:

yy0=f(x)(xx0)

一些记号

由于 y=f(x) ,所以我们记:

Δy
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值