1. 导数的几何意义
函数 f(x) 在点 P 的导数定义为
有两点要注意:
- 切线并不是只与曲线只有一个交点的线
- 它是曲线上另一点逐渐靠近 P 点时,形成的割线斜率的极限。
所以导数的几何定义即为:
Limit of slopes of secant lines
PQ as Q→P ( P fixed). The slope ofPQ¯¯¯¯¯ :
在我们知道了曲线的导数 f′(x) 后,我们可以求得点 P(x0,y0) 处的切线方程为:
y−y0=f′(x)(x−x0)一些记号
由于 y=f(x) ,所以我们记:
Δy