单变量微积分(一):导数(Derivative)与极限(Limit)及微积分(calculus)

本系列是MIT 18.01公开课 笔记,有兴趣的可以b站搜 mit 18.01

导数(几何角度):函数上某一点的切线的斜率(slope)

切线函数:       {\color{Red} y-y_{0}=m(x-x_{0})} 

斜率公式:       {\color{Red} k=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}}

其中x0,y0为函数上某一点p(x0,y0),为该切线函数α的斜率。

经过p点的线可以有无数条直线,如何说α就是p点的切线呢?

现在有一条割线 β 同时经过该函数的两点 P ,Q。如果使得 Q 逐渐靠近 P(依旧是不脱离原本函数的靠近,即沿着该函数的曲线靠近),割线 β 最终会与切线 α 重合

所以,切线是一种极限:Q趋近于P时,割线PQ的极限(P不变而Q变化)

下面,如何求斜率?

其中 Δx 为水平方向即 x 轴的两点的位置的差,Δy 为垂直方向即 y 轴的两点的位置的差。

直线PQ的斜率为 {\color{Red}m= \frac{\Delta y}{\Delta x}}

极限的表现不仅仅在割线上,还有斜率(slope),因此斜率m的极限表达式如下:

{\color{Red}m=\lim_{\Delta x\rightarrow 0} \frac{\Delta y}{\Delta x}}

接下来,将P和Q的坐标表示出来,如下图:

用坐标表示上述的斜率方程为:

{\color{Red}m= {f}'(x_{0}) = \lim_{\Delta x\rightarrow 0} \frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x}}

其中 f(x0 + Δx) = Δy+y0 , f(x0) = y0

该公式又名差商,因分子和分母都有差值:

分母 → Δx = x0 + Δx - x0

分子 → Δy = Δy + y0 - y0

实际上我们所求得的斜率m或者导数f`(x0)都称为微积分。

幂函数导数

设                 f(x)=x^{n},n=1,2,3...

求                 \frac{d}{dx}x^{n}=?

首先,          \frac{\Delta y}{\Delta x}=\frac{(x+\Delta x)^{n}-x^{n}}{\Delta x}

这里的   (x+\Delta x)^{n} 涉及到了二项式定理,其展开为:

             (x+\Delta x)^{n}=(x+\Delta x)...(x+\Delta x)={\color{Red} x^{n}+nx^{n-1}\Delta x}+O((\Delta x)^{2})  

其中             O((\Delta X)^{2})       表示剩下的项里的Δx具有更高阶,但是这些项并不重要,重要的是红色部分。

带入最终得          \frac{\Delta y}{\Delta x} = nx^{n-1}+O(\Delta x)

加入极限后得最终幂函数的导数公式    {\color{Red} \lim_{\Delta x\rightarrow 0} \frac{d}{dx}x^{n}=nx^{n-1}}      这就是为什么O那里说不重要的原因。

导数符号

牛顿符号:{\color{Blue} f{}'(x)}

莱布尼茨符号:{\color{Blue} \frac{df}{dx}=\frac{dy}{dx}=\frac{d}{dx}f=\frac{d}{dx}y}

但是他们的用法都是等价的:{\color{Blue}f{}'(x)= \frac{df}{dx}=\frac{dy}{dx}=\frac{d}{dx}f=\frac{d}{dx}y}

 

 

 

导数(物理角度):变化率(rate of change)

在进行 y = f(x) 的作图时,可以动态检测 x 和 y 的变化,相当于记录了相对变化率,即     \frac{\Delta y}{\Delta x}

这是一种平均变化,通常将 x 考虑为时间,记录在时间区间 Δx 上的平均变化率。平均变化率的极限可表示为 

  \lim_{x\rightarrow ?}\frac{dy}{dx}  ,称为瞬时变化率

例1. q = 电荷 , \frac{dq}{dt} = 电流     ——> 这里的变化率即化身为电流

例2. s = 距离,\frac{ds}{dt} = 速度     ——> 这里的变化率即化身为速度

例3. 从 40 米高楼往下扔一个球,设初始时间 t1 = 0sec , 最终落到地面的时间 t2 = 3sec ,且球下落时的初始高度是 h1 = 40 meters,最终落到地面的高度是 h2 = 0 meters,假设由重力加速度( 实际情况还要考虑到阻力等问题,这里只讲高数不讲细致的物理原理 )得到 h = 40-3t^{2} ,则平均速率的表示为 

\frac{\Delta h}{\Delta t} = \frac{h2-h1}{t2-t1}=\frac{0-40}{3-0}=-\frac{40}{3}m/s

瞬时速率的表示为:

\frac{d}{dt}h = 0-6t=-6t

所以当球落地的瞬时,速率为:

-6\ast t2=-6\ast 3=-18m/s

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值