高数强化日志(7.15~7.21)

这里写目录标题

2020年七月十五日

1.导数定义 lim ⁡ x → 0 ∫ 0 x 2 f ( t ) d t x 2 ∫ 0 x f ( t ) d t , f ( x ) = 0 , f ( x ) ˙ ≠ 0 \displaystyle \lim_{x \to 0}\frac{\int^{x^2}_0f(t)dt}{x^2\int^x_0f(t)dt},f(x)=0,\dot{f(x)}≠0 x0limx20xf(t)dt0x2f(t)dtf(x)=0,f(x)˙=0

  • 洛必达一次求得 lim ⁡ x → 0 2 x f ( x 2 ) x 2 f ( x ) + 2 x ∫ 0 x f ( t ) d t \displaystyle \lim_{x \to 0}\frac{2xf(x^2)}{x^2f(x)+2x\int^x_0f(t)dt} x0limx2f(x)+2x0xf(t)dt2xf(x2)
  • 洛必达再进行第二次的话仍然是 0 0 \frac{0}{0} 00显然有问题
  • 因此上下同除 x 3 x^3 x3
  • lim ⁡ x → 0 2 f ( x 2 ) − f ( 0 ) x 2 f ( x ) − f ( 0 ) x + 2 ∫ 0 x f ( t ) d t x 2 \displaystyle \lim_{x \to 0}\frac{2\frac{f(x^2)-f(0)}{x^2}}{\frac{f(x)-f(0)}{x}+2\frac{\int^x_0f(t)dt}{x^2}} x0limxf(x)f(0)+2x20xf(t)dt2x2f(x2)f(0)
  • 其中 2 ∫ 0 x f ( t ) d t x 2 2\frac{\int^x_0f(t)dt}{x^2} 2x20xf(t)dt使用洛必达
  • 等价于 f ( x ) − f ( 0 ) x \frac{f(x)-f(0)}{x} xf(x)f(0)

2.切线斜率 lim ⁡ x → 1 2 f ( 3 − x ) − 3 x − 1 = − 1 \displaystyle \lim_{x \to 1}\frac{2f(3-x)-3}{x-1}=-1 x1limx12f(3x)3=1

  • 题目条件: f ( x ) 在 x = 2 处 连 续 f(x)在x=2处连续 f(x)x=2
  • 凑t=x+1
  • 则有 lim ⁡ t → 2 2 f ( 2 + ( 2 − t ) ) − 2 f ( 2 ) t − 2 = − 2 f ( x ) ˙ \displaystyle \lim_{t \to 2}\frac{2f(2+(2-t))-2f(2)}{t-2}=-2\dot{f(x)} t2limt22f(2+(2t))2f(2)=2f(x)˙

3.参数问题 f ( x ) = x a + e b x f(x)=\frac{x}{a+e^{bx}} f(x)=a+ebxx

  • 题目条件 f ( x ) 在 ( − ∞ , + ∞ ) f(x)在(-\infty ,+\infty) f(x)(,+)上连续
  • 即可求得 a ≥ 0 a≥0 a0
  • 因为要保证 a + e b x a+e^{bx} a+ebx不为0,为0就会间断

4.连续问题 f ( x ) f(x) f(x)

  • 如果 f ( x ) 在 x = a 处 连 续 , 则 f ( x ) 在 x = a 的 一 个 邻 域 内 连 续 f(x)在x=a处连续,则f(x)在x=a的一个邻域内连续 f(x)x=af(x)x=a ——这句话是错的
    原因: f ( x ) = { 0 , 有 理 数 x 2 , 无 理 数 f(x)=\left\{ \begin{aligned} 0&, 有理数\\ x^2&, 无理数 \end{aligned} \right. f(x)={0x2,,
    这样 f ( x ) 在 x = 0 处 连 续 f(x)在x=0处连续 f(x)x=0,但在任意 x = a ≠ 0 x=a≠0 x=a=0处,处处间断

  • lim ⁡ h → 0 [ f ( a + h ) − f ( a − h ) ] = 0 \displaystyle \lim_{h \to 0}[f(a+h)-f(a-h)]=0 h0lim[f(a+h)f(ah)]=0 f ( x ) 在 x = a 处 连 续 f(x)在x=a处连续 f(x)x=a——这句话是错的
    原因:
    f ( x ) = { 2 , x = 0 x 2 , x ≠ 0 f(x)=\left\{ \begin{aligned} 2&, x=0\\ x^2&, x≠0 \end{aligned} \right. f(x)={2x2,x=0,x=0
    满足条件,但是 f ( x ) 在 x = 0 处 不 连 续 f(x)在x=0处不连续 f(x)x=0
    这种情况就是左右都是连续的,中间有个可去间断点

5.洛必达使用 ( a + b + c d ) (a+b+\frac{c}{d}) a+b+dc

  • 最好不要单独对 c d \frac{c}{d} dc使用洛必达
  • 要把 a + b a+b a+b也通分进分式再对整体进行洛必达

6.三角函数 s i n ( x + π 2 ) sin(x+\frac{π}{2}) sin(x+2π)

  • 奇变偶不变,符号看象限
  • x + π 2 x+\frac{π}{2} x+2π在第二象限,sin为正
  • 所以等价于cox

7.等价代换 t a n ( s i n x ) − s i n ( t a n x ) tan(sinx)-sin(tanx) tan(sinx)sin(tanx)

  • 不能直接 t a n x − s i n x tanx-sinx tanxsinx,因为只要最后会变成 x − x x-x xx,一开始就不能代换
  • 应该拆项 t a n ( s i n x ) − x − [ s i n ( t a n x ) − x ] tan(sinx)-x -[sin(tanx)-x] tan(sinx)x[sin(tanx)x]

8.拉格朗日 e − e n l n ( 1 + 1 n ) e-e^{nln(1+\frac{1}{n})} eenln(1+n1)

  • 一 个 为 1 , 一 个 为 0 ∗ ∞ 一个为1,一个为0*\infty 10
  • ξ \xi ξ 趋向于有具体值的那个

2020年七月十六日

1.极限证明几何平均数

  • a > 0 , x 1 > 0 a>0,x_1>0 a>0,x1>0题目 x n + 1 = 1 4 ( 3 x n + a x n 3 ) x_{n+1}=\frac{1}{4}(3x_n+\frac{a}{x^3_n}) xn+1=41(3xn+xn3a)
  • 正数的算术平均数不小于几何平均数
  • 所以有 x n + 1 = 1 4 ( 3 x n + a x n 3 ) ≥ x n ∗ x n ∗ x n ∗ a x n 3 4 = a 4 x_{n+1}=\frac{1}{4}(3x_n+\frac{a}{x^3_n})≥\sqrt[4]{x_n*x_n*x_n*\frac{a}{x^3_n}}=\sqrt[4]{a} xn+1=41(3xn+xn3a)4xnxnxnxn3a =4a

2.介值定理和零点定理

  • 证明结论小括号,用零点定理
  • 证明结论中括号,用介值定理

3. lim ⁡ n → ∞ a n = A 证 数 列 a n 有 界 \displaystyle \lim_{n \to \infty} a_n=A证数列{a_n有界} nliman=Aan

  • ξ 0 = 1 , 根 据 极 限 定 义 , 存 在 N , 当 n > N 时 , 有 ∣ a n − A ∣ < 1 \xi_0=1,根据极限定义,存在N,当n>N时,有|a_n-A|<1 ξ0=1,N,n>NanA<1
  • 所以 ∣ a n ∣ ≤ ∣ A ∣ + 1 |a_n|≤|A|+1 anA+1
  • 取M=max{ ∣ a 1 , ∣ a 2 ∣ , . . . ∣ a N ∣ , ∣ A ∣ + 1 {|a_1,|a_2|,...|a_N|,|A|+1} a1,a2,...aN,A+1}
  • 则对一切的n,有 ∣ a n ∣ ≤ M |a_n|≤M anM

4. e x f ( x ) e^xf(x) exf(x) e − f ( x ) e^{-f(x)} ef(x) [ 0 , 1 ] [0,1] [0,1]上单调增加,证 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]上连续

  • 证明连续,首先思路就是求极限,左极限等于右极限
  • x 0 ∈ [ 0 , 1 ] x_0∈[0,1] x0[0,1]分两种情况
  • 第一种 x 0 > x , x → x 0 − x_0>x,x\to x^-_0 x0>xxx0
  • 第二种 x 0 < x , x → x 0 + x_0<x,x\to x^+_0 x0<x,xx0+
  • 通过单调增加这个条件可以弄出两个不等式
  • 不等式求极限的情况,一般就想到夹逼定理

5.极限定义

  • 对于 任 意 的 ξ > 0 , 存 在 X > 0 , 当 x < − X 时 , 有 ∣ f ( x ) − A ∣ < ξ , 称 A 为 f ( x ) 当 x → + ∞ 时 的 极 限 任意的\xi>0,存在X>0,当x<-X时,有|f(x)-A|<\xi,称A为f(x)当x \to +\infty 时的极限 ξ>0X>0,x<X,f(x)A<ξAf(x)x+
  • 使用的时候 ξ \xi ξ任意取一个值,然后存在X>0,套用后面的不等式

6. x t a n x 的 间 断 点 \frac{x}{tanx}的间断点 tanxx

  • 间断点要分三种情况!
  • x = k π ( k = ± 1 , ± 2 , ± 3 , ± 4... ) , 这 种 情 况 t a n x = 0 , 极 限 为 ∞ , 第 二 类 间 断 点 x=kπ(k=±1,±2,±3,±4...),这种情况tanx=0,极限为\infty,第二类间断点 x=kπ(k=±1,±2,±3,±4...)tanx=0,
  • x = k π + π 2 ( k = 0 , ± 1 , ± 2 , ± 3 , ± 4... ) , t a n x = ∞ , 极 限 为 0 , 可 去 间 断 点 x=kπ+\frac{π}{2}(k=0,±1,±2,±3,±4...),tanx=\infty,极限为0,可去间断点 x=kπ+2π(k=0±1,±2,±3,±4...)tanx=0
  • x = 0 x=0 x=0,单独拿出来算,极限无穷小约掉为1,可去间断点

7.间断点 s i n ∞ sin\infty sin

  • 出现这个说明极限不存在,属于第二类间断点
  • 同时可以类推出cos的情况

8. f ( x ) = lim ⁡ t → x ( s i n t s i n x ) x s i n t − s i n x , 求 f ( x ) \displaystyle f(x)=\lim_{t \to x}(\frac{sint}{sinx})^{\frac{x}{sint-sinx}},求f(x) f(x)=txlim(sinxsint)sintsinxxf(x)的间断点

  • 首先这种题,要先化简
  • 化 简 为 f ( x ) = e x s i n x 化简为f(x)=e^{\frac{x}{sinx}} f(x)=esinxx再来求间断点就简单了

9. ∫ 0 1 l n ( 1 + x 2 ) \int^1_0ln(1+x^2) 01ln(1+x2)

  • 求得为 2 l n π − 4 2 2ln\frac{π-4}{2} 2ln2π4

10. lim ⁡ n → ∞ ( 1 + 1 2 + 1 3 + . . . + 1 n ) l n ( n + 1 ) \displaystyle \lim_{n \to \infty}\frac{(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n})}{ln(n+1)} nlimln(n+1)(1+21+31+...+n1)

  • x ∈ [ 1 , 2 ] , 1 ≥ 1 x , 则 1 ≥ ∫ 1 2 1 x d x x∈[1,2],1≥\frac{1}{x},则1≥\int^2_1\frac{1}{x}dx x[1,2],1x1,112x1dx
    x ∈ [ 2 , 3 ] , 1 2 ≥ 1 x , 则 1 2 ≥ ∫ 2 3 1 x d x x∈[2,3],\frac{1}{2}≥\frac{1}{x},则\frac{1}{2}≥\int^3_2\frac{1}{x}dx x[2,3],21x1,2123x1dx

    x ∈ [ n , n + 1 ] , 1 n ≥ 1 x , 则 1 n ≥ ∫ 2 3 1 x d x x∈[n,n+1],\frac{1}{n}≥\frac{1}{x},则\frac{1}{n}≥\int^3_2\frac{1}{x}dx x[n,n+1],n1x1,n123x1dx
    从而可得 ( 1 + 1 2 + 1 3 + . . . + 1 n ) ≥ ∫ 1 n + 1 1 x d x = l n ( n + 1 ) (1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n})≥\int^{n+1}_1\frac{1}{x}dx=ln(n+1) (1+21+31+...+n1)1n+1x1dx=ln(n+1)

  • x ∈ [ 1 , 2 ] , 1 2 ≤ 1 x , 则 1 2 ≤ ∫ 1 2 1 x d x x∈[1,2],\frac{1}{2}≤\frac{1}{x},则\frac{1}{2}≤\int^2_1\frac{1}{x}dx x[1,2],21x1,2112x1dx
    x ∈ [ 2 , 3 ] , 1 3 ≤ 1 x , 则 1 3 ≤ ∫ 2 3 1 x d x x∈[2,3],\frac{1}{3}≤\frac{1}{x},则\frac{1}{3}≤\int^3_2\frac{1}{x}dx x[2,3],31x1,3123x1dx

    x ∈ [ n − 1 , n ] , 1 n ≤ 1 x , 则 1 n ≤ ∫ n − 1 n 1 x d x x∈[n-1,n],\frac{1}{n}≤\frac{1}{x},则\frac{1}{n}≤\int^n_{n-1}\frac{1}{x}dx x[n1,n],n1x1,n1n1nx1dx
    从而可得 ( 1 + 1 2 + 1 3 + . . . + 1 n ) ≤ 1 + ∫ 1 n 1 x d x = 1 + l n n (1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n})≤1+\int^{n}_1\frac{1}{x}dx=1+lnn (1+21+31+...+n1)1+1nx1dx=1+lnn

  • 然后使用夹逼定理

2020年七月十九日

1.夹逼定理 n + i 2 + 1 n n+\frac{i^2+1}{n} n+ni2+1

  • n + i 2 n ≤ n + n 2 + 1 n ≤ n + ( i + 1 ) 2 n n+\frac{i^2}{n}≤n+\frac{n^2+1}{n}≤n+\frac{(i+1)^2}{n} n+ni2n+nn2+1n+n(i+1)2

2.夹逼定理 lim ⁡ n → ∞ ∑ i = 1 n ( i + 1 ) 2 n \displaystyle \lim_{n \to \infty} \sum^n_{i=1}\frac{(i+1)^2}{n} nlimi=1nn(i+1)2

  • 原式= lim ⁡ n → ∞ [ ∑ i = 1 n i 2 n + ( n + 1 ) 2 n − 1 2 n ] \displaystyle \lim_{n \to \infty}[\sum^n_{i=1}\frac{i^2}{n}+\frac{(n+1)^2}{n}-\frac{1^2}{n}] nlim[i=1nni2+n(n+1)2n12]

3.极限证明 ∣ f ( x ) ∣ ≤ ∣ e x − 1 ∣ |f(x)|≤|e^x-1| f(x)ex1

  • 此不等式可得 ∣ f ( x ) x ∣ ≤ ∣ e x − 1 x ∣ |\frac{f(x)}{x}|≤|\frac{e^x-1}{x}| xf(x)xex1
  • 通 过 lim ⁡ x → 0 f ( x ) x ≤ lim ⁡ x → 0 e x − 1 x \displaystyle 通过\lim_{x \to 0}\frac{f(x)}{x}≤\lim_{x \to 0}\frac{e^x-1}{x} x0limxf(x)x0limxex1
  • 根据保号性可以求出一个结论

4. 极限证明 x n = f ( x n − 1 ) x_n=f(x_{n-1}) xn=f(xn1)

  • x n = f ( x n − 1 ) = f ( x 1 ) + ∫ 1 n − 1 f ( x ) ˙ d x x_n=f(x_{n-1})=f(x_1)+\int^{n-1}_1\dot{f(x)}dx xn=f(xn1)=f(x1)+1n1f(x)˙dx
  • f ( x ) ˙ ≤ k 1 + x 2 \dot{f(x)}≤\frac{k}{1+x^2} f(x)˙1+x2k
  • 所以 x n ≤ f ( x 1 ) + ∫ − ∞ + ∞ k 1 + x 2 = f ( x 1 ) + π k x_n≤f(x_1)+\int^{+\infty}_{-\infty}\frac{k}{1+x^2}=f(x_1)+πk xnf(x1)++1+x2k=f(x1)+πk
  • 可得x_n有界

5.极限证有界

  • 题目 lim ⁡ x → + ∞ f ( x ) \displaystyle \lim_{x \to +\infty}f(x) x+limf(x)
  • 设 lim ⁡ x → + ∞ f ( x ) = A , 取 ξ 0 = 1 , 存 在 当 X > 0 , 当 x > X 0 时 , ∣ f ( x ) − A ∣ < 1 设\displaystyle \lim_{x \to +\infty}f(x)=A,取\xi_0=1,存在当X>0,当x>X_0时,|f(x)-A|<1 x+limf(x)=A,ξ0=1X>0,x>X0f(x)A<1
  • 从而有 ∣ f ( x ) ∣ < ∣ A ∣ + 1 |f(x)|<|A|+1 f(x)<A+1
  • 又因为 f ( x ) 在 [ a , X 0 ] 上 连 续 , 根 据 闭 区 间 上 连 续 函 数 有 界 的 性 质 f(x)在[a,X_0]上连续,根据闭区间上连续函数有界的性质 f(x)[a,X0]
  • 存在 k > 0 , 当 x ∈ [ a , X 0 ] , 有 ∣ f ( x ) ∣ ≤ k k>0,当x∈[a,X_0],有|f(x)|≤k k>0,x[a,X0],f(x)k
  • M = m a x ∣ A ∣ + 1 , k , 对 一 切 的 x ∈ [ a , + ∞ ) , 有 ∣ f ( x ) ∣ < M M=max{|A|+1,k},对一切的x∈[a,+\infty),有|f(x)|<M M=maxA+1,kx[a,+),f(x)<M

6.夹逼定理 lim ⁡ n → ∞ ∑ i = 1 n e i n n + 1 i \displaystyle \lim_{n \to \infty}\sum^n_{i=1}\frac{e^{\frac{i}{n}}}{n+\frac{1}{i}} nlimi=1nn+i1eni

  • n + 1 ≤ n + 1 i ≤ 1 n n+1≤n+\frac{1}{i}≤\frac{1}{n} n+1n+i1n1

7. l n 1 + n 1 − n ln\frac{1+n}{1-n} ln1n1+n

  • 看到就要有拆成 l n ( 1 + n ) − l n ( 1 − n ) ln(1+n)-ln(1-n) ln(1+n)ln(1n)的思路

8.尽可能高阶无穷小

  • 把式子一直求导,求出 f ( x ) , f ( x ) 一 阶 导 , f ( x ) 二 阶 导 , f ( x ) 三 阶 导 , f ( x ) 四 阶 导 , f(x),f(x)一阶导,f(x)二阶导,f(x)三阶导,f(x)四阶导, f(x),f(x)f(x),f(x),f(x),
  • 当x=0时,出现n个式子(未知数多少n就是多少)显然为0的时候,再多求一次导
  • 把剩下式子直接等于0,即可求出未知数

9.找间断点

  • 找间断点的时候还有一个情况是,分子分母同时为0,这样分母为0就不一定是第二类间断点

10.变限积分带绝对值 lim ⁡ x → 0 ∫ 0 2 x ∣ t − x ∣ s i n t d t ∣ x 3 ∣ \displaystyle \lim_{x\to 0}\frac{\int^{2x}_0|t-x|sintdt}{|x^3|} x0limx302xtxsintdt

  • 上下同除|x|,可以直接除进积分里
  • 原式= lim ⁡ x → 0 ∫ 0 2 x ∣ t x − 1 ∣ s i n t d t x 2 \displaystyle \lim_{x\to 0}\frac{\int^{2x}_0|\frac{t}{x}-1|sintdt}{x^2} x0limx202xxt1sintdt
  • 再进行换元可得 lim ⁡ x → 0 ∫ 0 2 x ∣ t x − 1 ∣ s i n t d t x \displaystyle \lim_{x\to 0}\frac{\int^{2x}_0|\frac{t}{x}-1|sintdt}{x} x0limx02xxt1sintdt

11.绝对值变换

  • ∣ a ∣ ∣ b ∣ = ∣ a b ∣ \frac{|a|}{|b|}=|\frac{a}{b}| ba=ba
  • ∣ x ∣ 2 = x 2 |x|^2=x^2 x2=x2可以直接代换,不用考虑别的情况,但是如果次数是奇数的话就一定不能这样

12.导数问题,在某点有公共切线

  • 意思就是导数值相等,函数值也相等

13.分段函数分界点的导数

  • 可用导数的定义
  • 如果用导数定义求出来是的无穷
  • 就分别求左导数和右导数

14.求可导性的时候

  • 要求左右导数比较
  • 有定义的直接求导
  • 没定义的先求导后求极限,条件是原函数的极限和在定义内的连续

2020年七月二十一日

1.证明一阶连续可导

  • ①证明导数存在
  • ②证明导函数连续

2.二阶可导

  • 不能保证二阶导函数有极限
  • 也就是 lim ⁡ \lim lim后面只能有一阶导数

3.法线

  • 法线斜率与切线斜率相乘为-1

4.两曲线相切

  • 曲线导数相等且函数值相等

5.奇偶函数的导数

  • 奇函数求导为偶函数
  • 偶函数求导为奇函数
  • 导数是奇函数,则x=0时,导数为0
  • l n ( x + 1 + x 2 ) ln(x+\sqrt[]{1+x^2}) ln(x+1+x2 )是奇函数

6. d y d x ∣ x = 0 \frac{dy}{dx}|_{x=0} dxdyx=0

  • 意思就是求在x=0时的导数

7. f ( g ( x ) ) 的 导 数 f(g(x))的导数 f(g(x))

  • g ( x 0 ) = u 0 g(x_0)=u_0 g(x0)=u0
  • d y d x ∣ x = x 0 = f ( u 0 ) ∗ g ( x 0 ) ˙ ˙ \frac{dy}{dx}|_{x=x_0}=\dot{f(u_0)*\dot{g(x_0)}} dxdyx=x0=f(u0)g(x0)˙˙
  • 如果内层不可导,也推不出整个不可导

8. s e c 2 x sec^2x sec2x代换公式

  • s e c 2 x = 1 + t a n 2 x sec^2x=1+tan^2x sec2x=1+tan2x

9.复合函数可导概念

  • 复合函数内外都可导则一定可导
  • 复合函数内外只要有 一个不可导(包括两个不可导),那就是不一定
  • 没有一定不可导的情况

10.参数方程经典

  • 题目 d y d x = t , x = f ( t ) ˙ \frac{dy}{dx}=t,x=\dot{f(t)} dxdy=t,x=f(t)˙
  • 二阶导 d 2 y d x 2 = 1 ∗ 1 f ( t ) ¨ \frac{d^2y}{dx^2}=1*\frac{1}{\ddot{f(t)}} dx2d2y=1f(t)¨1
  • 二阶导就是一阶导对t求导,再乘x对t求导的倒数

11.参数方程中其中有隐函数求二阶导

  • 用二阶导的公式法

12.变限积分 0 − ∫ 0 y f ( u ) d u = 0 0-\int^y_0f(u)du=0 00yf(u)du=0

  • 给出条件 f ( u ) > 0 或 者 < 0 f(u)>0或者<0 f(u)>0<0恒成立
  • 那么只有可能y=0,上限等于下限

13. l n ∣ x ∣ ln|x| lnx求导

  • 也是等于 1 x \frac{1}{x} x1

14.sinx和cosx的n阶导

  • s i n x 的 n 阶 导 = s i n ( x + n π 2 ) sinx的n阶导=sin(x+n\frac{π}{2}) sinxn=sin(x+n2π)
  • c o s x 的 n 阶 导 = c o s ( x + n π 2 ) cosx的n阶导=cos(x+n\frac{π}{2}) cosxn=cos(x+n2π)

15.sinx+cosx变化

  • 2 s i n ( x + π 4 ) \sqrt[]{2}sin(x+\frac{π}{4}) 2 sin(x+4π)
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值