高数强化日志(7.9~7.14)

知识点学习日志


2020年七月九日

1.泰勒公式

  • l n ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 − ⋯ + ( − 1 ) n − 1 x n n ln(1+x)=x-\frac{1}{2}x^2+\frac{1}{3}x^3-\dots+(-1)^{n-1}\frac{x^n}{n} ln(1+x)=x21x2+31x3+(1)n1nxn
  • e x = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + … 1 n ! x n e^x=1+x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+\dots\frac{1}{n!}x^n ex=1+x+2!1x2+3!1x3+n!1xn

2.数列不能用洛必达法则

  • 对数列没有导数概念,所以不能用,注意一般未知数是n

3. l n ( 1 + 1 / x ) ln(1+1/x) ln(1+1/x)情况

  • lim ⁡ x → ∞ ( 1 + 1 x ) x 2 e x \displaystyle \lim_{x\to \infty}\frac{(1+\frac{1}{x})^{x^2}}{e^x} xlimex(1+x1)x2
  • 转换为 lim ⁡ x → ∞ e x 2 l n ( 1 + 1 x ) − x \displaystyle \lim_{x\to \infty}e^{x^2ln(1+\frac{1}{x})-x} xlimex2ln(1+x1)x
  • 再用泰勒公式
  • 只有当 x → + ∞ x \to +\infty x+时才可以用等价代换, x → ∞ 和 − ∞ 都 不 能 使 用 x \to \infty和-\infty都不能使用 x使

4.等价代换

(1) lim ⁡ x → 0 1 − c o s x \displaystyle \lim_{x\to 0}1-\sqrt[]{cosx} x0lim1cosx
  • 根据 lim ⁡ x → 0 − ( 1 + ( c o s x − 1 ) − 1 ) ∼ 1 2 ( c o s x − 1 ) \displaystyle \lim_{x\to 0}- (\sqrt[]{1+(cosx-1)}-1)\sim\frac{1}{2}(cosx-1) x0lim(1+(cosx1) 1)21(cosx1)
  • 直接化成 x 2 4 \displaystyle\frac{x^2}{4} 4x2
(2) lim ⁡ x → 0 x 1 + x \displaystyle\lim_{x\to 0} \frac{x}{1+x} x0lim1+xx
  • 等价于0
(3) lim ⁡ x → 0 1 + x − 1 − x \displaystyle\lim_{x\to 0} \sqrt[]{1+x}-\sqrt[]{1-x} x0lim1+x 1x
  • 用拉格朗日 2 x 2 ξ + 1 \displaystyle\frac{2x}{2\sqrt[]{\xi+1}} 2ξ+1 2x

5. lim ⁡ x → + ∞ x 6 + x 5 6 − x 6 − x 5 6 \displaystyle\lim_{x\to +\infty} \sqrt[6]{x^6+x^5}-\sqrt[6]{x^6-x^5} x+lim6x6+x5 6x6x5 放大缩小应用

  • 提取 lim ⁡ x → + ∞ x ( x 1 + 1 x 6 − 1 ) − x ( x 1 − 1 x 6 − 1 ) \displaystyle\lim_{x\to +\infty}x(x\sqrt[6]{1+\frac{1}{x}}-1)-x(x\sqrt[6]{1-\frac{1}{x}}-1) x+limx(x61+x1 1)x(x61x1 1)

6.等价代换会抵消的时候用泰勒

  • lim ⁡ x → 0 x s i n x 2 − 2 ( 1 − c o s x ) s i n x x 4 \displaystyle\lim_{x \to 0}\frac{xsinx^2-2(1-cosx)sinx}{x^4} x0limx4xsinx22(1cosx)sinx
  • 等价代换会变成 0 − 0 \displaystyle 0-0 00
  • 2 ( 1 − c o s x ) s i n x 转 换 为 2 s i n x − s i n 2 x , 然 后 使 用 泰 勒 \displaystyle 2(1-cosx)sinx转换为2sinx-sin2x,然后使用泰勒 2(1cosx)sinx2sinxsin2x使

7. lim ⁡ x → ∞ ( e x 2 + x 3 ) 1 x 2 \displaystyle\lim_{x\to \infty} (e^{x^2}+x^3)^{\frac{1}{x^2}} xlim(ex2+x3)x21求法

  • 先提 e x 2 转 换 成 e x 2 ( 1 + x 3 e x 2 ) e^{x^2}转换成e^{x^2}(1+\frac{x^3}{e^{x^2}}) ex2ex2(1+ex2x3)

8.公式 lim ⁡ x → 0 ( a x + b x + c x 3 ) 1 x \displaystyle\lim_{x\to 0} (\frac{a^x+b^x+c^x}{3})^{\frac{1}{x}} x0lim(3ax+bx+cx)x1

  • 等价于 a b c 3 \displaystyle \sqrt[3]{abc} 3abc



2020年七月十日

1. lim ⁡ x → + ∞ x ∗ a r c t a n x \displaystyle\lim_{x\to +\infty}x*arctanx x+limxarctanx

  • lim ⁡ x → + ∞ a r c t a n x 1 x \displaystyle\lim_{x\to +\infty}\frac{arctanx}{\frac{1}{x}} x+limx1arctanx
  • 用洛必达
    lim ⁡ x → + ∞ 1 1 + x 2 − 1 x 2 \displaystyle\lim_{x\to +\infty}\frac{\frac{1}{1+x^2}}{-\frac{1}{x^2}} x+limx211+x21
  • 即可化简为 lim ⁡ x → + ∞ − x 2 1 + x 2 \displaystyle\lim_{x\to +\infty}-\frac{x^2}{1+x^2} x+lim1+x2x2

2. s i n π x 的 性 质 sinπx的性质 sinπx

  • x为整数时,该式为0,多用于连续和间断点的判断中

3. lim ⁡ x → 1 ( x − 1 ) l n x s i n 2 π x \displaystyle \lim_{x \to 1}\frac{(x-1)lnx}{sin^2πx} x1limsin2πx(x1)lnx

  • 直接换元 t = x − 1 t=x-1 t=x1
  • 原式= lim ⁡ x → 1 t l n ( 1 + t ) s i n 2 π ( 1 + t ) \displaystyle \lim_{x \to 1}\frac{tln(1+t)}{sin^2π(1+t)} x1limsin2π(1+t)tln(1+t)
  • 然后根据 s i n x 的 周 期 性 再 进 行 等 价 代 换 求 出 sinx的周期性 再进行等价代换求出 sinx

4. A = s i n A A=sinA A=sinA

  • A = 0 A=0 A=0

5. lim ⁡ n → ∞ ( 1 a n + 1 2 − 1 a n 2 ) \displaystyle\lim_{n\to \infty}(\frac{1}{a^2_{n+1}}-\frac{1}{a^2_{n}}) nlim(an+121an21)

  • a n + 1 = s i n a n 且 0 < a 1 < π a_{n+1}=sina_n且0<a_1<π an+1=sinan0<a1<π
  • 原式可以转换为 lim ⁡ a n → 0 ( 1 s i n 2 a n − 1 a n 2 ) \displaystyle\lim_{a_n\to 0}(\frac{1}{sin^2a_{n}}-\frac{1}{a^2_{n}}) an0lim(sin2an1an21)

6. s i n ( s i n x ) − x sin(sinx)-x sin(sinx)x

  • s i n ( a r c s i n x ) = x sin(arcsinx)=x sin(arcsinx)=x

7. lim ⁡ x → 0 x e x − l n ( 1 + x ) x 2 \displaystyle\lim_{x\to0}\frac{xe^x-ln(1+x)}{x^2} x0limx2xexln(1+x)

  • 不能直接等价代换
  • 得拆分为 x e x − x x 2 + x − l n ( 1 + x ) x 2 \frac{xe^x-x}{x^2}+\frac{x-ln(1+x)}{x^2} x2xexx+x2xln(1+x)

8. lim ⁡ x → 0 ∫ 0 x s i n t ( d t ) − l n 1 + x 2 x 4 \displaystyle\lim_{x\to0}\frac{\int^x_0sint(dt)-ln\sqrt[]{1+x^2}}{x^4} x0limx40xsint(dt)ln1+x2

  • 分子分母的次数明显不一样的时候,最好使用泰勒
  • s i n t 的 原 函 数 直 接 可 以 求 为 − c o s t sint的原函数直接可以求为-cost sintcost

9. lim ⁡ n → ∞ n s i n 4 n 2 + 1 π \displaystyle\lim_{n\to\infty}nsin\sqrt[]{4n^2+1}π nlimnsin4n2+1 π

  • 利用 s i n 的 周 期 性 , s i n x = s i n ( x − 2 π ) sin的周期性,sinx=sin(x-2π) sinsinx=sin(x2π)

10. ( 1 + x ) a − 1 ∼ a x (1+x)^a-1\sim ax (1+x)a1ax

  • 条件是 x 必 须 趋 向 于 0 , 不 然 无 法 等 价 代 换 x必须趋向于0,不然无法等价代换 x0



2020年七月十一日

1. lim ⁡ x → 1 ( x − 1 ) t a n π 2 x \displaystyle \lim_{x \to 1}(x-1)tan\frac{π}{2}x x1lim(x1)tan2πx

  • t a n ( π 2 + x ) = − c o t x \displaystyle tan(\frac{π}{2}+x)=-cotx tan(2π+x)=cotx
  • t a n ( π 2 − x ) = c o t x \displaystyle tan(\frac{π}{2}-x)=cotx tan(2πx)=cotx
  • c o t x 和 t a n x 是 倒 数 关 系 cotx和tanx是倒数关系 cotxtanx
  • t a n ( π + x ) = t a n x tan(π+x)=tanx tan(π+x)=tanx
  • t a n ( − x ) = − t a n x tan(-x)=-tanx tan(x)=tanx,奇函数的性质

2. lim ⁡ x → 0 t a n 2 x + x f ( x ) x 3 求 lim ⁡ x → 0 2 + f ( x ) x 2 \displaystyle\lim_{x \to 0}\frac{tan2x+xf(x)}{x^3}求\lim_{x \to 0}\frac{2+f(x)}{x^2} x0limx3tan2x+xf(x)x0limx22+f(x)

  • 这种题要么泰勒,要么加减x凑公式
  • 等价代换肯定是错的,因为不一定符合等价代换条件

3.函数 f ( x ) = ∣ x s i n x ∣ e c o s x 是 什 么 函 数 f(x)=|xsinx|e^{cosx}是什么函数 f(x)=xsinxecosx

  • 偶函数

4.极限 lim ⁡ x → 0 1 x s i n 1 x \displaystyle \lim_{x \to 0} \frac{1}{x}sin\frac{1}{x} x0limx1sinx1

  • x n = 1 2 n π + π 2 x_n=\frac{1}{2nπ+\frac{π}{2}} xn=2nπ+2π1时,极限为 ∞ \infty
  • x n = 1 2 n π x_n=\frac{1}{2nπ} xn=2nπ1时,极限为0
  • 因此极限不存在但不是 ∞ \infty

5.无穷小比较 g ( x ) = x 5 5 + x 6 6 g(x)=\frac{x^5}{5}+\frac{x^6}{6} g(x)=5x5+6x6

  • 在算无穷小比较的时候, g ( x ) ∼ x 5 g(x) \sim x^5 g(x)x5

6.变限积分 lim ⁡ x → a x 2 x − a ∫ a x f ( t ) d t \displaystyle \lim_{x \to a}\frac{x^2}{x-a}\int^x_af(t)dt xalimxax2axf(t)dt

  • 直接洛必达

7.变限积分 ∫ g ( x ) f ( x ) F ( t ) d t \int^{f(x)}_{g(x)}F(t)dt g(x)f(x)F(t)dt

  • 求导之后为 f ( x ) ˙ F ( f ( x ) ) − g ( x ) ˙ F ( g ( x ) ) \dot{f(x)}F(f(x))-\dot{g(x)}F(g(x)) f(x)˙F(f(x))g(x)˙F(g(x))
  • 也就是说,如果下限积分为常数,就都是0不用管

8.间断点判断 lim ⁡ n → ∞ 1 + x 1 + x 2 n \displaystyle \lim_{n \to \infty}\frac{1+x}{1+x^{2n}} nlim1+x2n1+x

  • 先写出各类情况
  • 显然要分类成 ∣ x ∣ < 1 , ∣ x ∣ > 1 , x = − 1 , x = 1 |x|<1,|x|>1,x=-1,x=1 x<1x>1,x=1,x=1四种情况,然后找间断点

9.立方和、立方差公式 x 3 + 1 x^3+1 x3+1

  • a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) a^3+b^3=(a+b)(a^2-ab+b^2) a3+b3=(a+b)(a2ab+b2)

10. t a n x tanx tanx的导数

  • s e c 2 x sec^2x sec2x

11.三角函数 lim ⁡ x → 0 1 − c o s x c o s 2 x c o s 3 x x 2 \displaystyle \lim_{x \to 0} \frac{1-cosxcos2xcos3x}{x^2} x0limx21cosxcos2xcos3x

12.泰勒公式 ( 1 + x ) a (1+x)^a (1+x)a

  • 1 + a x + a ( a − 1 ) x 2 2 ! + . . . . . + a ( a − 1 ) . . . ( a − n + 1 ) x n n ! 1+ax+\frac{a(a-1)x^2}{2!}+.....+\frac{a(a-1)...(a-n+1)x^n }{n!} 1+ax+2!a(a1)x2+.....+n!a(a1)...(an+1)xn

13.夹逼定理 lim ⁡ n → ∞ ∫ 0 1 l n n ( 1 + x ) 1 + x 2 d x \displaystyle \lim_{n \to \infty}\int^1_0\frac{ln^n(1+x)}{1+x^2}dx nlim011+x2lnn(1+x)dx

  • l n n ( 1 + x ) 1 + x 2 ≤ l n n ( 1 + x ) ≤ x n \frac{ln^n(1+x)}{1+x^2}≤ln^n(1+x)≤x^n 1+x2lnn(1+x)lnn(1+x)xn
  • ∫ 0 1 x n = 1 n + 1 \int^1_0x^n=\frac{1}{n+1} 01xn=n+11
  • n → ∞ 时 1 n + 1 → 0 n \to \infty时\frac{1}{n+1} \to0 nn+110
  • 然后夹逼定理可以得到原式的极限为0

13. e x − s i n x − c o s x e^x-sinx-cosx exsinxcosx

  • e x = 1 + x + x 2 2 ! + x 3 3 ! e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!} ex=1+x+2!x2+3!x3
  • s i n x = x − x 3 3 ! sinx=x-\frac{x^3}{3!} sinx=x3!x3
  • c o s x = 1 − x 2 2 ! cosx=1-\frac{x^2}{2!} cosx=12!x2
  • 合成为 x 2 x^2 x2

14.三角函数 lim ⁡ x → 0 1 − c o s x c o s 2 x c o s 3 x \displaystyle \lim_{x \to 0}1-cosxcos2xcos3x x0lim1cosxcos2xcos3x

  • 拆开 ( 1 − c o s x ) + c o s x ( 1 − c o s x ) + c o s x c o s 2 x ( 1 − c o s 3 x ) (1-cosx)+cosx(1-cosx)+cosxcos2x(1-cos3x) (1cosx)+cosx(1cosx)+cosxcos2x(1cos3x)

  • cosx,cos2x,cos都可以表示为1

15.夹逼定理公式 1 2 + 2 2 + . . . + n 2 1^2+2^2+...+n^2 12+22+...+n2

  • n ( n + 1 ) ( 2 n + 1 ) 6 \frac{n(n+1)(2n+1)}{6} 6n(n+1)(2n+1)

16.定积分定义 ∫ 1 x 2 + a 2 \int \frac{1}{\sqrt[]{x^2+a^2}} x2+a2 1

  • l n ( x + x 2 + a 2 + C ) ln(x+\sqrt{x^2+a^2}+C) ln(x+x2+a2 +C)

17.定积分定义求解 ∫ 0 1 l n ( 1 + x ) \int^1_0ln(1+x) 01ln(1+x)

  • 要用分部积分法
  • 现在记忆一下即可
  • x l n ( 1 + x ) ∣ 0 1 − ∫ 0 1 ( 1 − 1 1 + x d x ) xln(1+x)|^1_0-\int^1_0(1-\frac{1}{1+x}dx) xln(1+x)0101(11+x1dx)
    = l n 2 − 1 + l n 2 =ln2-1+ln2 =ln21+ln2
    = l n 4 e =ln\frac{4}{e} =lne4

18.夹逼配合定积分 lim ⁡ n → ∞ [ s i n π n n + 1 + s i n 2 π n n + 1 2 + . . . + s i n π n + 1 n ] \displaystyle \lim_{n \to \infty}[\frac{sin\frac{π}{n}}{n+1}+\frac{sin\frac{2π}{n}}{n+\frac{1}{2}}+...+\frac{sinπ}{n+\frac{1}{n}}] nlim[n+1sinnπ+n+21sinn2π+...+n+n1sinπ]

  • 令原式为 a n a_n an

  • 则可用夹逼
    1 n + 1 ( s i n π n + s i n 2 π n + . . . . + s i n π ) ≤ a n ≤ 1 n ( s i n π n + s i n 2 π n + . . . . + s i n π ) \frac{1}{n+1}(sin\frac{π}{n}+sin\frac{2π}{n}+....+sinπ)≤a_n≤\frac{1}{n}(sin\frac{π}{n}+sin\frac{2π}{n}+....+sinπ) n+11(sinnπ+sinn2π+....+sinπ)ann1(sinnπ+sinn2π+....+sinπ)

  • 然后再对 1 n + 1 ( s i n π n + s i n 2 π n + . . . . + s i n π ) \frac{1}{n+1}(sin\frac{π}{n}+sin\frac{2π}{n}+....+sinπ) n+11(sinnπ+sinn2π+....+sinπ)使用定积分定义

  • 1 n \frac{1}{n} n1,则 1 n + 1 化 成 n n + 1 ∗ 1 n 刚 好 也 约 掉 \frac{1}{n+1}化成\frac{n}{n+1}*\frac{1}{n}刚好也约掉 n+11n+1nn1

  • 则求 ∫ 0 1 s i n x π \int^1_0sinxπ 01sinxπ

  • 看到分母是 n + 1 , n + 1 2 , . . . . . n + 1 n n+1,n+\frac{1}{2},.....n+\frac{1}{n} n+1,n+21.....n+n1就可以拆成 1 n + 1 和 1 n 使 用 夹 逼 \frac{1}{n+1}和\frac{1}{n}使用夹逼 n+11n1使



2020年七月十二日

1. lim ⁡ x → ∞ 1 x ∫ 0 x ( t 2 + 1 ) e t 2 − x 2 d t \displaystyle \lim_{x \to \infty}\frac{1}{x}\int^x_0(t^2+1)e^{t^2-x^2}dt xlimx10x(t2+1)et2x2dt

  • 这里注意 e − x e^{-x} ex可以直接提出去

2.拉格朗日 lim ⁡ x → 0 t a n π 4 ( t + 1 ) − 1 \displaystyle \lim_{x \to 0}tan\frac{π}{4}(t+1)-1 x0limtan4π(t+1)1

  • 使用拉格朗日时,一定要保存所有相同的
  • 转化成 s e c 2 ( π 4 + ξ ) sec^2(\frac{π}{4}+\xi) sec2(4π+ξ)

3.拆项 lim ⁡ x → 0 l n ( ( 1 − x 2 ) c o s x ) \displaystyle \lim_{x \to 0}ln(\sqrt[]{(1-x^2)}cosx) x0limln((1x2) cosx)

  • 使用公式 l n ( a b ) = l n a + l n b ln(ab)=lna+lnb ln(ab)=lna+lnb

4. ∞ 0 型 \infty^0型 0

  • 通常化为 e 0 l n ∞ e^{0ln\infty} e0ln之后用洛必达

5.拉格朗日 lim ⁡ x → + ∞ x 2 ( e 1 2 x − 1 − 1 e 2 x − 1 ) \displaystyle \lim_{x \to +\infty}x^2(e^{\frac{1}{2x-1}-\frac{1}{e^{2x-1}}}) x+limx2(e2x11e2x11)

  • 使用拉格朗日 ( 1 2 x − 1 − 1 2 x + 1 ) 作 为 整 体 (\frac{1}{2x-1}-\frac{1}{2x+1})作为整体 2x112x+11
  • ξ \xi ξ就介于 1 2 x − 1 和 1 2 x + 1 之 间 , 也 就 是 0 \frac{1}{2x-1}和\frac{1}{2x+1}之间,也就是0 2x112x+110

6.带 o ( x n ) o(x^n) o(xn)求参数

  • 首先想到泰勒公式
  • 后面如果带 o ( x n ) o(x^n) o(xn),那么前面不管最高次多少,只要算到 x n x^n xn即可
  • 泰勒拆分旁边还有乘的 x x x,则要把x的次数加上拆的最高次数加起来等于 o ( x n ) o(x^n) o(xn)

7. lim ⁡ x → − ∞ l n ( a e − x + x 2 + s i n x ) b x 2 + x c o s x − 1 = 2 \displaystyle \lim_{x \to -\infty}\frac{ln(ae^{-x}+x^2+sinx)}{\sqrt[]{bx^2+xcosx-1}}=2 xlimbx2+xcosx1 ln(aex+x2+sinx)=2求b

  • 把分母的 e − x 从 l n 中 提 出 来 , 分 母 就 有 了 个 − x , 就 可 以 进 行 比 较 了 e^{-x}从ln中提出来,分母就有了个-x,就可以进行比较了 exlnx,

8.变限积分 ∫ 0 x f ( x 2 − t 2 ) d t \int^x_0 f(x^2-t^2)dt 0xf(x2t2)dt

  • 转换 s = x 2 − t 2 s=x^2-t^2 s=x2t2
  • ds=-2t dt,找前面的等式凑
  • 然后 ∫ 0 x 会 变 成 ∫ x 0 \int^x_0会变成\int^0_x 0xx0
  • 要通过负号变回来
  • 也就是说从前面除掉一个2t,然后 ∫ 0 x \int^x_0 0x就不用变了

2020年七月十四日

1. lim ⁡ x → ∞ ( x 2 + a x + b + c x + d ) = 0 \displaystyle \lim_{x \to \infty} (\sqrt[]{x^2+ax+b}+cx+d)=0 xlim(x2+ax+b +cx+d)=0

  • 求a,b,c,d
  • 提取一个x, 1 x \frac{1}{x} x1就都为0了,可以求得一个未知数
  • 然后把提取的x变到分母部分
  • 1 x \frac{1}{x} x1换元成t

2. f ( x ) = lim ⁡ n → ∞ x 2 n − 1 + a x 2 + b x x 2 n + 1 是 连 续 函 数 \displaystyle f(x)=\lim_{n \to \infty}\frac{x^{2n-1}+ax^2+bx}{x^{2n}+1}是连续函数 f(x)=nlimx2n+1x2n1+ax2+bx

  • 看到 x 2 n x^{2n} x2n可以想到四种情况
  • 该函数明显分段函数

3.已知 3 a a + 2 − 4 a n + 1 + a n = 0 , 求 lim ⁡ n → ∞ a n 3a_{a+2}-4a_{n+1}+a_n=0,求\displaystyle \lim_{n \to \infty}a_n 3aa+24an+1+an=0,nliman

  • 容易求得 a n + 2 − a n + 1 a n + 1 − a n = 1 3 \frac{a_{n+2}-a_{n+1}} {a^{n+1}-a^n}=\frac{1}{3} an+1anan+2an+1=31

  • b n = a n + 1 − a n b_n=a_{n+1}-a_n bn=an+1an

  • b n = 1 3 n − 1 b_n=\frac{1}{3^{n-1}} bn=3n11

  • a 2 − a 1 = 1 a_2-a_1=1 a2a1=1
    a 3 − a 2 = 1 3 a_3-a_2=\frac{1}{3} a3a2=31


    a n + 1 − a n = 1 3 n − 2 a_{n+1}-a_n=\frac{1}{3^{n-2}} an+1an=3n21

  • 等比数列求和公式 S n = a 1 1 − q n 1 − q = a 1 − a n q 1 − q S_n=a_1\frac{1-q^n}{1-q}=\frac{a_1-a_nq}{1-q} Sn=a11q1qn=1qa1anq

  • 原式 = 1 + 3 2 ( 1 − 1 3 n − 1 ) =1+\frac{3}{2}(1-\frac{1}{3^{n-1}}) =1+23(13n11)

  • 也就是 lim ⁡ n → ∞ a n = 5 2 \displaystyle \lim_{n \to \infty}a_n=\frac{5}{2} nliman=25

4.连续性讨论 lim ⁡ n → ∞ l n ( e n + x n ) n ( x > 0 ) \displaystyle \lim_{n \to \infty}\frac{ln(e^n+x^n)}{n}(x>0) nlimnln(en+xn)(x>0)

  • 首先可以把式子化为 n + l n ( 1 + ( x e ) n ) n \frac{n+ln(1+(\frac{x}{e})^n)}{n} nn+ln(1+(ex)n)
  • 然后分情况讨论
  • 当为 ( 0 , e ) , n n = 1 (0,e),\frac{n}{n}=1 (0,e),nn=1
  • 当为 e 时 , 仍 然 是 n n = 1 e时,仍然是\frac{n}{n}=1 e,nn=1
  • 当为 ( e , + ∞ ) (e,+\infty) (e,+),就有情况了, l n ( e n + x n ) n 要 提 取 x n 化 为 n l n x + l n ( 1 + ( e x ) n ) n = l n x \frac{ln(e^n+x^n)}{n}要提取x^n化为\frac{nlnx+ln(1+(\frac{e}{x})^n)}{n}=lnx nln(en+xn)xnnnlnx+ln(1+(xe)n)=lnx

5. x 1 − x 和 x 1 + x \frac{x}{1-x}和\frac{x}{1+x} 1xx1+xx

  • 都等价于x
  • 因为 x 1 − x x = 1 1 + x = 1 \frac{\frac{x}{1-x}}{x}=\frac{1}{1+x}=1 x1xx=1+x1=1所以等价

6.定积分定义 lim ⁡ n → ∞ ∫ 0 1 e x s i n n x 1 + e x d x \displaystyle \lim_{n \to \infty}\int^1_0\frac{e^xsin^nx}{1+e^x}dx nlim011+exexsinnxdx

  • e x s i n n x 1 + e x < s i n n x < x n \frac{e^xsin^nx}{1+e^x}<sin^nx<x^n 1+exexsinnx<sinnx<xn
  • ∫ 0 1 x n = 1 n + 1 = 0 \int^1_0x^n=\frac{1}{n+1}=0 01xn=n+11=0

7.间断点判断 e 1 x e^{\frac{1}{x}} ex1

  • 如果这个是分子,很容易形成第二类间断点
  • 因为趋向于正无穷时, e x e^x ex也趋向无穷

8.间断点 ∣ x − 1 ∣ | x-1| x1

  • x → 1 − x \to 1^- x1时,为 1 − x 1-x 1x
  • x → 1 + x \to 1^+ x1+时,为 x − 1 x-1 x1

9.间断点 l n ∣ x ∣ ln|x| lnx

  • 不受 x = 1 和 x = 0 x=1和x=0 x=1x=0的影响

10.乘积形式泰勒公式展开

  • e x c o s x − 1 − x x 3 \frac{e^xcosx-1-x}{x^3} x3excosx1x
  • e x = 1 + x + 1 2 x 2 + 1 6 x 3 e^x=1+x+\frac{1}{2}x^2+\frac{1}{6}x^3 ex=1+x+21x2+61x3
  • cosx=1-\frac{1}{2}x^2
  • 原则是写到次数不高3的最后一个次数,相成如果有高于3次的x直接不算,只算3和3以下的

11. lim ⁡ x → 0 x − s i n x c o s 2 x \displaystyle\lim_{x \to 0}x-sinxcos2x x0limxsinxcos2x等价代换

-加减情况不能直接把cos2x=1

  • c o s 2 x = 1 − 2 s i n 2 x cos2x=1-2sin^2x cos2x=12sin2x

12. lim ⁡ x → ∞ ( x r a c t a n x 1 x ) x 2 \displaystyle \lim_{x \to \infty}(xractanx\frac{1}{x})^{x^2} xlim(xractanxx1)x2

  • 直接把 1 x 看 作 t \frac{1}{x}看作t x1t

13. lim ⁡ x → 0 x c o s 1 x \displaystyle \lim_{x\to 0} xcos\frac{1}{x} x0limxcosx1

  • 直接等于0
  • 因为x=0,cos在0-1之间,相乘必定为0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值